Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 200-001-8 | CAS number: 50-00-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Additional toxicological data
Administrative data
- Endpoint:
- additional toxicological information
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
Data source
Reference
- Reference Type:
- review article or handbook
- Title:
- Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol
- Author:
- IARC
- Year:
- 2 006
- Bibliographic source:
- Lyon, International Agency for Research on Cancer, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Vol. 88, pp 39-325
Materials and methods
Test material
- Reference substance name:
- Formaldehyde
- EC Number:
- 200-001-8
- EC Name:
- Formaldehyde
- Cas Number:
- 50-00-0
- Molecular formula:
- CH2O
- IUPAC Name:
- formaldehyde
- Details on test material:
- - Name of test material (as cited in study report): formaldehyde
Constituent 1
Results and discussion
Applicant's summary and conclusion
- Conclusions:
- Genotoxicty and cytoxicity play important roles in the carcinogenesis of the test substance in nasal tissues.
- Executive summary:
The following summary and evaluation of the mode of action is given in IARC (2006), page 279 -280:
"The current data indicate that both genotoxicty and cytoxicity play important roles in the carcinogenesis of formaldehyde in nasal tissues. DNA–protein cross-links provide a potentially useful marker of genotoxicity. The concentration–response curve for the formation of DNA–protein cross-links is bi-phasic, and the slope increases at formaldehyde concentrations of about 2–3 ppm [2.4–3.7 mg/m3] in Fischer 344 rats. Similar results are found in rhesus monkeys, although the dose–response curve is less well defined in this species. Cell proliferation, which appears to amplify greatly the genotoxic effects of formaldehyde, is increased considerably at concentrations of formaldehyde of about 6 ppm [7.4 mg/m3], and results in a marked increase in the occurrence of malignant lesions in the nasal passages of rats at concentrations above this level. Several possible mechanisms were considered for the induction of human leukaemia, such as clastogenic damage to circulatory stem cells. The Working Group was not aware of any good rodent models that simulate the occurrence of acute myeloid leukaemia in humans. Therefore, on the basis of the data available at this time, it was not possible to identify a mechanism for the induction of myeloid leukaemia in humans."
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
Deze website maakt gebruik van cookies om het surfen zo aangenaam mogelijk te maken.