Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-767-9 | CAS number: 99-57-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Hydrolysis
Administrative data
Link to relevant study record(s)
- Endpoint:
- hydrolysis
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- data from handbook or collection of data
- Remarks:
- experimental data of read across substances
- Justification for type of information:
- Data for the target chemical is summarized based on the structurally similar read across chemicals
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Qualifier:
- according to guideline
- Guideline:
- other: as mentioned below
- Principles of method if other than guideline:
- WoE report is based on two hydrolysis studies as-
2., 3. and 4. - GLP compliance:
- not specified
- Radiolabelling:
- not specified
- Analytical monitoring:
- not specified
- Temp.:
- 25 °C
- Remarks:
- 2. The study was performed at pH 4, 7 and 9, respectively.
- Duration:
- 5 d
- Temp.:
- 50 °C
- Remarks:
- 3. Study was performed at different pH range, i.e., at pH 4, 7 and 9, respectively.
- Temp.:
- 25 °C
- Remarks:
- 4. The study was performed at pH 4, 7 and 9, respectively.
- Positive controls:
- not specified
- Negative controls:
- not specified
- Transformation products:
- not specified
- Temp.:
- 25 °C
- DT50:
- > 1 yr
- Remarks on result:
- other: 2. The study was performed at pH 4, 7 and 9, respectively. No hydrolysis was noted at any of the three levels of pH tested.
- Temp.:
- 50 °C
- Remarks on result:
- other: 3. Hydrolysis half-life value of test chemical was not known, but hydrolysis of test chemical did not reach > 10% in any of the pH systems (i.e., at pH 4, 7 and 9, respectively) and thus the preliminary study was terminated.
- Temp.:
- 25 °C
- Remarks on result:
- other: 4. Hydrolysis half-life value of test chemical was not known, but test chemical was reported to be stable at all the three pH levels (i.e, at pH 4, 7 and 9).
- Details on results:
- 2. The half-life value of test chemical was determined to be > 1 yr at pH 4, 7 and 9, respectively at a temperature of 25⁰C. As the test chemical has no groups that are susceptible to hydrolysis in the pH range 4 to 9, therefore, it is considered stable to hydrolysis in surface and groundwater, respectively.
3. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days.
4. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 25⁰C. - Validity criteria fulfilled:
- not specified
- Conclusions:
- On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 1 yr, at pH range 4, 7 & 9 and a temperature of 25°C or 50°C, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.
- Executive summary:
Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical.The studies are as mentioned below:
The half-life of the test chemical was determined at different pH range. The study was performed at a temperature of 25°C and pH of 4, 7 and 9, respectively. As the test chemical has no groups that are susceptible to hydrolysis in the pH range 4 to 9, therefore, it is considered stable to hydrolysis in both surface and groundwater, respectively. The half-life value of test chemical was determined to be > 1 yrat pH 4, 7 and 9, respectively at a temperature of25⁰C. Thus based on this, test chemical is considered to be not hydrolysable.
In an another study, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 50°C. As the hydrolysis of test chemical did not reach > 10% in any of the pH systems, the preliminary study was terminated. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days. Based on this, it is concluded that the test substance is not hydrolysable.
For the test chemical, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 25°C. Although half-life value of test chemical was not known, but chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively & at a temperature of 25⁰C. Thus based on this, test chemical is considered to be not hydrolysable.
On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 1 yr, at pH range 4, 7 & 9 and a temperature of 25°C or 50°C, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.
Reference
Description of key information
On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 1 yr, at pH range 4, 7 & 9 and a temperature of 25°C or 50°C, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.
Key value for chemical safety assessment
Additional information
Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical. The studies are as mentioned below:
The half-life of the test chemical was determined at different pH range. The study was performed at a temperature of 25°C and pH of 4, 7 and 9, respectively. As the test chemical has no groups that are susceptible to hydrolysis in the pH range 4 to 9, therefore, it is considered stable to hydrolysis in both surface and groundwater, respectively. The half-life value of test chemical was determined to be > 1 yrat pH 4, 7 and 9, respectively at a temperature of25⁰C. Thus based on this, test chemical is considered to be not hydrolysable.
In an another study, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 50°C. As the hydrolysis of test chemical did not reach > 10% in any of the pH systems, the preliminary study was terminated. Test chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively at a temperature of 50⁰C for 5 days. Based on this, it is concluded that the test substance is not hydrolysable.
For the test chemical, the half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 25°C. Although half-life value of test chemical was not known, but chemical was reported to be hydrolytically stable at pH 4, 7 and 9, respectively & at a temperature of 25⁰C. Thus based on this, test chemical is considered to be not hydrolysable.
On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 1 yr, at pH range 4, 7 & 9 and a temperature of 25°C or 50°C, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.