Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 211-694-1 | CAS number: 687-47-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- acute toxicity
- Route of original study:
- By inhalation
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- low hazard (no threshold derived)
- Most sensitive endpoint:
- irritation (respiratory tract)
Acute/short term exposure
- Hazard assessment conclusion:
- low hazard (no threshold derived)
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- skin irritation/corrosion
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- skin irritation/corrosion
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Additional information - workers
Exposure to ethyl-S-lactate at levels up to 2500 mg/m³ resulted in concentration-related adverse effects in the nose of all test groups and in growth retardation and decreased food consumption in rats exposed to 2500 mg ethyl lactate/m³ air. Growth retardation was explained by the impaired ability to smell and taste as a result of severe damage to the olfactory epithelium. Thus, toxicity is restricted to local effects that are considered to be related to severe damage to the olfactory epithelium and hyperplasia/hypertrophy of the respiratory epithelium (pH-change due to lactic acid). No indication of clear systemic effects have been reported.
Ethyl-S-lactate is considered to be irritating to the respiratory tract based on a decreased breathing rate (RD50 = 750 mg/m³) after acute exposure and cytotoxic effects (caused by the low pH of rapidly formed lactic acid) seen in the olfactory and respiratory epithelium after sub-acute exposure.
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- acute toxicity
- Route of original study:
- By inhalation
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- low hazard (no threshold derived)
- Most sensitive endpoint:
- irritation (respiratory tract)
Acute/short term exposure
- Hazard assessment conclusion:
- low hazard (no threshold derived)
- Most sensitive endpoint:
- irritation (respiratory tract)
DNEL related information
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- skin irritation/corrosion
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- skin irritation/corrosion
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- By inhalation
DNEL related information
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- medium hazard (no threshold derived)
Additional information - General Population
Exposure to ethyl-S-lactate at levels up to 2500 mg/m³ resulted in concentration-related adverse effects in the nose of all test groups and in growth retardation and decreased food consumption in rats exposed to 2500 mg ethyl-S-lactate/m³ air. Growth retardation was explained by the impaired ability to smell and taste as a result of severe damage to the olfactory epithelium. Thus, toxicity is restricted to local effects that are considered to be related to severe damage to the olfactory epithelium and hyperplasia/hypertrophy of the respiratory epithelium (pH-change due to lactic acid). No indication of clear systemic effects have been reported.
Ethyl-S-lactate is considered to be irritating to the respiratory tract based on a decreased breathing rate (RD50 = 750 mg/m³) after acute exposure and cytotoxic effects (caused by the low pH of rapidly formed lactic acid) seen in the olfactory and respiratory epithelium after sub-acute exposure.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
Šajā tīmekļa vietnē tiek izmantoti sīkfaili, lai nodrošinātu Jums vislabāko lietojumu mūsu tīmekļa vietnēs.