Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 206-354-4 | CAS number: 330-54-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 0.17 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 12
- Modified dose descriptor starting point:
- NOAEC
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 5.79 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
DNEL related information
- Overall assessment factor (AF):
- 43.2
- Modified dose descriptor starting point:
- NOAEL
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- no hazard identified
Additional information - workers
For calculation of the DNELs the assessment factors (AF) of the ECETOC Technical report no. 86 "Derivation of assessment factors for human health" (2003) were applied. The AF used from the ECETOC Technical report no. 86 for the DNEL calculation for Diuron differ in two points from the AF recommended in the "Guidance on information requirements and chemical safety assessment Chapter R.8: Characterisation of dose[concentration]-response for human health", ECHA, May 2008. The AF for remaining differences is 1 instead of 2.5 and the AF for intraspecies differences for worker is 3 instead of 5. The AF from the ECETOC Technical report no. 86 were used because there is evidence that association between intra- and inter-species assessment factors is conservative and that the inclusion of a remaining difference factor is unnecessary. ECETOC (2003) analyzed the available data of Freireich et al. (1966), Schein et al. (1979), and Watanabe et al. (1992) and concluded that apart from allometric scaling there is the likelihood of additional variability around the extrapolated dose or predicted NOAEL in humans. However, this additional variability is probably due not only to possible differences in biological sensitivity between species, but also to intraspecies differences. Apart from these aspects, one also has to consider the different endpoints (maximum tolerated dose – MTD - versus toxic dose low - TDL) used for the evaluation of human and animal data. Thus, it is evident that the comparison of ‘toxic doses’ across species is actually a comparison between doses that cause ‘dose-limiting’ toxicity (MTDH) in a sensitive subpopulation of humans (health-compromised, cancer patients) at one extreme and lethality in 10% of the population of otherwise assumed healthy animals (lethal dose - LD10) at the other. This will overestimate the sensitivity of humans in relation to other species, but to an extent which is (largely) unquantifiable. As a consequence, the adjustment of interspecies AF to account for the differences noted in such analyses is not scientifically justified. Therefore, although residual interspecies variability may remain following allometric scaling, this is largely accounted for in the default assessment factor proposed for intraspecies variability reflecting the inherent interdependency of inter- and intraspecies factors (ECETOC, 2003). For this total (inter- and intraspecies) variability, ECETOC proposed an overall factor of 3 for the workplace and of 5 for the general population. Therefore, a separate residual AF for interspecies is unnecessary because it is already accounted for by the intraspecies assessment factor (Calabrese, 1985; Hattis et al, 1987).
References
Calabrese, E.J. (1985). Uncertainty factors and interindividual variation. Regul Toxicol Pharmacol 5:190-196. ECETOC (2003). Derivation of Assessment Factors for Human Health Risk Assessment. Technical Report No.86. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels, Belgium.
Freireich, E (1966). Quantitative Comparison of Toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Canc Chemotherap Res 50: 219-245.
Hattis, D. et al. (1987). Human variability in susceptibility to toxic chemicals: a preliminary analysis of pharmacokinetic data from normal volunteers. Risk Anal 7:415 - 426.
Schein, P. et al. (1979). The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in humans. Clin Pharmacol Therap 11: 3-40. Watanabe, K. et al. (1992). Interspecies extrapolation: a re-examination of acute toxicity data.Risk Anal 12: 301-310.
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Acute/short term exposure
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
DNEL related information
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- hazard unknown but no further hazard information necessary as no exposure expected
Additional information - General Population
DNELs for general population do not have to be calculated, because there is no consumer exposure to Diuron.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.