Registration Dossier
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 241-034-8 | CAS number: 16961-83-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Carcinogenicity
Administrative data
Description of key information
No studies with HFS acid are available. High quality NTP studies in the rat and mouse are available for sodium fluoride
Key value for chemical safety assessment
Additional information
Justification for read-across from sodium fluoride
There are no carcinogenicity studies available for HF. The effects of chronic HF exposure will be dominated by local effects at the site of contact (irritation/corrosion), therefore performing studies with HF cannot be supported for scientific reasons and also on animal welfare grounds. Once absorbed into the body, HF will dissociate into its constituent ions and systemic toxicity will be due to fluoride. The analagous bevaviour of sodium fluoride (or any other water-soluble fluoride salts) means that read-across from NaF to HF is scientifically justified.
Studies in the rat
The NTP rat study showed evidence of an effect of sodium fluoride administration on the bones and teeth, consistent with the findings of other studies. There was no effect on survival in this study; bodyweights, food and water consumption, haematological and clinical chemistry parameters and organ weights were unaffected by treatment. Serum, urine and bone fluoride concentrations were increased in all treated groups; the urine calcium concentration was also marginally higher in females at the highest dose level. Osteosclerosis was seen in females at the highest dose level. The incidence of osteosarcoma was increased in males at the intermediate dose level (2%) and the high dose level (4%) but was within the historical range (0 -6%; mean 0.5%). The NTP concluded that the study provides 'equivocal evidence' for carcinogenicity in male rats.
An additional carcinogenicity study with NaF in the rat is available (Maurer et al, 1990). No evidence of carcinogenicity was seen in this study, at dose levels sufficient to cause toxicity.
Studies in the mouse
The NTP mouse study showed evidence of an effect of sodium fluoride administration on the teeth, consistent with the findings of other studies. There was no effect on survival in this study; bodyweights, food and water consumption, haematological parameters and organ weights were unaffected by treatment. Clinical chemistry revealed elevated ALP activity in females at the highest dose level. Microscopic findings were limited to dentine dysplasia in male mice at 175 ppm. There was no evidence of carcinogencity in either sex.
An additional carcinogenicity study with NaF is available (Maurer et al, 1993). A high level of osteosarcomas was seen in all (control and treated) groups in this study, a finding which was attributed to infection with a retrovirus. No conclusion on the carcinogenicity of sodium fluoride can be drawn from this study.
Justification for classification or non-classification
No classification is proposed. The EU RAR has reviewed all available data for HF and NaF and concludes that the data are sufficient to suggest that fluoride is not carcinogenic in animals.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

Route: .live2