Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-140-5 | CAS number: 7789-00-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
A substantial amount of information is available for the toxicity of chromium (VI) to terrestrial organisms. In the environment, it is likely that chromium (VI) will be reduced to chromium (III) in soil, and it is also likely that such conversion would have taken place in many of the toxicity tests.
For chromium (VI), long-term toxicity data are available for three trophic levels (plants, earthworms and soil processes/micro-organisms), with plants generally being the most sensitive species (although a clear NOEC has not been determined for earthworms, the EC50 values are generally higher than those found in the plant experiments). The lowest NOEC from these studies is around 0.35 mg/kg dry weight of soil for plants. According to the Technical Guidance Document, an assessment factor of 10 is appropriate and so the PNECsoil can be estimated as 0.035 mg/kg dry weight. Using the water content of soil from the Technical Guidance Document of 11.8% by weight (20% by volume), this is equivalent to a PNECsoil of around 0.031 mg/kg on a wet weight of soil basis.
Chromium (III) has generally been shown to be less toxic than chromium (VI) to soil organisms. One exception to this may be on the effects seen in some experiments using growth media (no soil) where reduction in root growth was seen at similar concentration as found for chromium (VI). Since chromium (III) adsorbs more strongly onto soil than chromium (VI), it would again be expected that in soils, chromium (III) would be less toxic than chromium (VI). From the available data, the NOEC for chromium (III) to plants is of the order of 100 mg Cr/kg soil, with a NOEC of 32 mg Cr/kg dry soil being reported for earthworms, and a NOEC/LOEC of ~100-330 mg Cr/kg soil also being reported. Applying an assessment factor of 10 to the lowest of these NOECs gives a PNEC for chromium (III) of approximately 3.2 mg Cr/kg dry soil, which is equivalent to a PNEC of around 2.8 mg/kg on a wet weight of soil basis. This value is also lower than the HC5 value for soil processes.
According to the Technical Guidance Document, an equilibrium partitioning approach can also be used in the derivation of the PNECsoil. However, such an approach for chromium (VI) should be considered very tentative in nature as chromium (VI) is likely to be reduced to chromium (III) under the conditions found in most soils, and the chromium (III) formed is likely to be of much lower water solubility (and bioavailability).
For chromium (VI), a PNECwater of 3.4 µg/l has been derived. For chromium (III) a worst-case PNEC of 4.7 µg/l was derived.
According to the Technical Guidance Document, the PNECsoil can be estimated from:
PNECsoil = Ksoil-water/RHOsoil x PNECwater x 1000
where RHOsoil = density of soil = 1,700 kg/m3
The following values for Ksoil-water were derived:
Chromium (VI) Ksoil-water = 75 m3/m3 (acid conditions); Ksoil-water = 3.2 m3/m3 (neutral/alkaline conditions)
Chromium (III) Ksoil-water = 1,200 m3/m3 (acid conditions); Ksoil-water = 22,500 m3/m3 (neutral/alkaline conditions).
Using these values, the PNECsoil can be estimated as follows:
For chromium (VI), PNECsoil = 0.15 mg/kg wet weight for acid conditions, and 0.006 mg/kg wet weight for other conditions. Similarly, for chromium (III), PNECsoil = 3.3 mg/kg wet weight for acid conditions and 62 mg/kg wet weight for other conditions.
The PNECsoil estimated for chromium (III) for acidic conditions using the equilibrium partitioning method is in very good agreement with the values obtained above using the available toxicity data. For the risk assessment the PNECs obtained from experimental data will be used. Thus the PNECsoil for chromium (VI) is taken as 0.031 mg/kg wet weight. The PNECsoil for chromium (III) is taken to be 2.8 mg/kg wet weight.
For the risk characterisation the PNECsoil for chromium (III) is used, as the concentrations of chromium in soil are calculated as chromium (III). It should be noted that the PNEC for chromium (III) is derived from experiments where a highly soluble (and hence bio available) form of chromium (III) has been tested. In the environment, chromium (VI) is likely to be reduced to forms of chromium (III) of limited solubility and bioavailability, where it is unlikely that the concentration of 'dissolved' and hence available chromium (III) will reach the levels where effects might be expected. This is seen in experiments with both soil and aquatic organisms when a form of chromium (III) with low water solubility has been tested. Similarly, it is clear that there are many natural soils where the levels of total chromium are above the PNECs derived here. Again, the main form of the chromium needs to be considered. In natural soils, the majority of chromium will be present as low solubility chromium (III) complexes, where bioavailability is again limited. The PNECs derived are not appropriate for such situations.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.