Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-128-1 | CAS number: 78-63-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Two studies on bioaccumulation were available on TRIGONOX 101.
The first study (Erhardt, 2008) was evaluated as the key study. This study assessed the bioaccumulation of TRIGONOX 101 using thein vitrotrout liver S9 metabolism assay (no guideline followed). The BCF value was determined with and without metabolism being taken into account. The calculation is based on the Arnot Gobas BCF mass balance model run with and without metabolism. When metabolic rate (Kmet) is set to 0, the model calculates a BCF ot 46097. When Kmet is experimentally determined using two methods: arterial hepatic and arterial hepatic and portal, blood flow extrapolation further to a trout hepatocyte in vitro study, BCFs are calculated as 766 and 443 L/Kg respectively. Thein vitrorate of metabolism was determined for this organic peroxide. The substance dissipated rapidly under biologically active conditions. A half- life for metabolism was 210 min or 3.5 hours. These data were used to extrapolate in vivo rate constants of metabolism or Kmet of 0.116 day-1or 0.189 day-1using hepatic portal blood flow or hepatic portal and arterial blood flow, respectively. The use of these kMET values in conjunction with the Gobas model dropped the calculated BCF from 31,819.51(assuming no metabolism) to 521 or 839.
The second study (author unknown, 2004) was evaluated as the weight of evidence. This study assessed the bioconcentration of TRIGONOX 101 on Cyprinus carpio, following "Methods concerning the testing of new chemical substances" (Kanpo n°. 5, Yakuhattsu n°.615, 49th Unit, n°.392, 1974, partially revised in 1998), which is similar to OECD Guideline 305. Results demonstrated that a BCF steady-state of 3690 and 2250 L/Kg (for primary and secondary concentration areas respectively).
As the experimental BCF study was incomplete missing numerous details allowing it to be validated, the BCF and as further experimental data are available from anin vitrostudy which is deamed to be valid, it is concluded that the BCF is between 521 and 839.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.