Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Biodegradation in water

Estimation Programs Interface Suite (2018) was run to predict the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that test chemical is expected to be not readily biodegradable.

Biodegradation in water and sediment

Estimation Programs Interface prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 0.703% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 180 days (4320 hrs). The half-life (180 days estimated by EPI suite) indicates that the chemical is persistent in water and the exposure risk to aquatic animals is moderate to high whereas the half-life period of test chemical in sediment is estimated to be 1620.833 days (38900 hrs). Based on this half-life value, it indicates that test chemical is persistent in sediment.

Additional information

Biodegradation in water

Predicted data of the test chemical and various supporting studies for its structurally similar read across substance were reviewed for the biodegradation end point which are summarized as below:

 

In a prediction using the Estimation Programs Interface Suite (2018), the biodegradation potential of the test chemical in the presence of mixed populations of environmental microorganisms was estimated. The biodegradability of the substance was calculated using seven different models such as Linear Model, Non-Linear Model, Ultimate Biodegradation Timeframe, Primary Biodegradation Timeframe, MITI Linear Model, MITI Non-Linear Model and Anaerobic Model (called as Biowin 1-7, respectively) of the BIOWIN v4.10 software. The results indicate that test chemical is expected to be not readily biodegradable.

 

In a supporting weight of evidence study from study report (2018) for the test item,28-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical. The study was performed at a temperature of 20°C. The test system included control, test item and reference item. Polyseed were used for this study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The % degradation of procedure control (reference item) was also calculated using BOD & ThOD and was determined to be 72.28%. Degradation of Sodium benzoate exceeds 63.25 % on 7 days & 69.27 % on 14th day. The activity of the inoculum was thus verified and the test can be considered as valid. The BOD28 value of test chemical was observed to be 0.4 mgO2/mg. ThOD was calculated as 1.31 mgO2/mg. Accordingly, the % degradation of the test item after 28 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 30.53%. Based on the results, the test item, under the test conditions, was considered to be not readily biodegradable in nature.

 

For the test chemical,28-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2018). The study was performed at a temperature of 20°C. The test system included control, test item and reference item. Polyseed were used for this study.The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The % degradation of procedure control (reference item) was also calculated using BOD & ThOD and was determined to be 73.49%. Degradation of Sodium Benzoate exceeds 31.32% on 7 days & 49.39% on 14th day. The activity of the inoculum was thus verified and the test can be considered as valid. The BOD28 value of test chemical was observed to be 0.52 mgO2/mg. ThOD was calculated as 2.44 mgO2/mg. Accordingly, the % degradation of the test item after 28 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to bee 21.31%. Based on the results, the test item, under the test conditions, was considered to be not readily biodegradable in nature.

 

On the basis of above results for test chemical, it can be concluded that the test chemical can be expected to be not readily biodegradable in nature.

Biodegradation in water and sediment

Estimation Programs Interface prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 0.703% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 180 days (4320 hrs). The half-life (180 days estimated by EPI suite) indicates that the chemical is persistent in water and the exposure risk to aquatic animals is moderate to high whereas the half-life period of test chemical in sediment is estimated to be 1620.833 days (38900 hrs). Based on this half-life value, it indicates that test chemical is persistent in sediment.