Registration Dossier

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Stability:

Hydrolysis:

On the basis of the experimental studies of the test chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be ranges from 5 to 5.5  yr, at pH range 7 and 200 days at pH 8 by second order hydrolysis rate constant. Thus, based on this half-life value, it can be concluded that the test chemical not hydrolysable in water.

Biodegradation:

Biodegradation in water:

35-days Closed Bottle test following the OECD guideline 301 D was performed to determine the ready biodegradability of the test chemical. The test system included control, test item and reference item. The concentration of test and reference item ( Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The BOD35 value of test chemical was observed to be 0.87 mgO2/mg. ThOD was calculated as 2.63 mgO2/mg. Accordingly, the % degradation of the test item after 35 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 33.07 %. Based on the results, the test chemical, under the test conditions was considered to be primary inherently biodegradable at 20 ± 1°C over a period of 35 days.

Biodegradation in water and sediment:

Estimation Programs Interface (EPI Suite, 2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 24.4 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.519%), indicates that test chemical is not persistent in sediment.

Biodegradation in water:

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (EPI suite, 2018). If released into the The half-life period of test chemical in soil is estimated to be  30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.environment, 74 % of the chemical will partition into soil according to the Mackay fugacity model level III.

Bioaccumulation:

In accordance with column 2 of Annex IX of the REACH regulation,testing for this endpointis scientifically not necessary and does not need to be conducted since the test chemical has a low potential for bioaccumulation based on logKow ≤ 3.

Transport and distribution:

Adsorption coefficient:

The adsorption coefficient Koc in soil and in sewage sludge of test chemical was determined by the Reverse Phase High Performance Liquid Chromatographic method according to OECD Guideline No. 121 for testing of Chemicals. The solutions of the test substance and reference substances were prepared in appropriate solvents. A test item solution was prepared by accurately weighing 4 mg of test item and diluted with Acetonitrile up to 10 ml. Thus, the test solution concentration was 400 mg/l. The pH of test substance was 6.4. Each of the reference substance and test substance were analysed by HPLC at 210 nm. After equilibration of the HPLC system, Urea was injected first, the reference substances were injected in duplicate, followed by the test chemical solution in duplicate. Reference substances were injected again after test sample, no change in retention time of reference substances was observed. Retention time tR were measured, averaged and the decimal logarithms of the capacity factors k were calculated. The graph was plotted between log Koc versus log k (Annex - 2).The linear regression parameter of the relationship log Koc vs log k were also calculated from the data obtained with calibration samples and therewith, log Koc of the test substance was determined from its measured capacity factor. The reference substances were chosen according to functional similarity with the test substance and calibration graph prepared. The reference substances were Acetanilide, 4-chloroaniline, 4-methylaniline(p-Tolouidine), N-methylaniline, p-toluamide Aniline, 2,5- Dichloroaniline, 4-nitrophenol, 2 - nitrophenol, 2-nitrobenzamide, 3-nitrobenzamide, Nitrobenzene, 4- Nitrobenzamide, 1-naphthylamine, 1-naphtol, Direct Red 81, Benzoic acid methylester, Carbendazim, Benzoic acid phenylester, Xylene, Ethylbenzene, Toluene, Naphthalene, 1,2,3-trichlorobenzene, Pentachlorophenol, Phenol, N,N-dimethylbenzamide, 3,5-dinitrobenzamide, N-methylbenzamide, Benzamide, phenanthrene, DDT having Koc value ranging from 1.25 to 5.63

The Log Koc value of test chemical was determined to be 2.834±0.018 at 25°C.This log Koc value indicates that the substance has a moderate sorption to soil and sediment and therefore have slow migration potential to ground water

Additional information

Stability:

Hydrolysis:

Data available for the test chemical has been reviewed from authoritative database (HSDB, 2018) to determine the half-life of hydrolysis as a function of pH. The studies are as mentioned below:

In first weight of evidence study the base catalyzed second order hydrolysis rate constant of test chemical was determined using a structure estimation method. The second order hydrolysis rate constant is determined to be 4.2 × 10-2 L/mol-sec with a corresponding half lives of 5.5 years and 200 days at pH 7 and 8, respectively. Based on the half-life values, it is concluded that the test chemical is not hydrolysable.

In another study the base catalyzed second order hydrolysis rate constant and half life of hydrolysis of test chemical was determined using a structure estimation method. The second order hydrolysis rate constant is determined to be 4.0 × 10-2L/mol-sec with a corresponding half lives of 5 years and 200 days at pH 7 and 8, respectively. Based on the half-life values, it is concluded that the test chemical is not hydrolysable.

On the basis of the experimental studies of the test chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be ranges from 5 to 5.5 yr, at pH range 7 and 200 days at pH 8 by second order hydrolysis rate constant . Thus, based on this half-life value, it can be concluded that the test chemical not hydrolysable in water.

Biodegradation:

Biodegradation in water:

35-days Closed Bottle test following the OECD guideline 301 D was performed to determine the ready biodegradability of the test chemical. The test system included control, test item and reference item. The concentration of test and reference item ( Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The BOD35 value of test chemical was observed to be 0.87 mgO2/mg. ThOD was calculated as 2.63 mgO2/mg. Accordingly, the % degradation of the test item after 35 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 33.07 %. Based on the results, the test chemical, under the test conditions was considered to be primary inherently biodegradable at 20 ± 1°C over a period of 35 days.

Biodegradation in water and sediment:

Estimation Programs Interface (EPI Suite, 2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 24.4 % of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.519%), indicates that test chemical is not persistent in sediment.

Biodegradation in water:

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (EPI suite, 2018). If released into the The half-life period of test chemical in soil is estimated to be  30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.environment, 74 % of the chemical will partition into soil according to the Mackay fugacity model level III.

Bioaccumulation:

In accordance with column 2 of Annex IX of the REACH regulation,testing for this endpointis scientifically not necessary and does not need to be conducted since the test chemical has a low potential for bioaccumulation based on logKow ≤ 3.

Transport and distribution:

Adsorption coefficient:

The adsorption coefficient Koc in soil and in sewage sludge of test chemical was determined by the Reverse Phase High Performance Liquid Chromatographic method according to OECD Guideline No. 121 for testing of Chemicals. The solutions of the test substance and reference substances were prepared in appropriate solvents. A test item solution was prepared by accurately weighing 4 mg of test item and diluted with Acetonitrile up to 10 ml. Thus, the test solution concentration was 400 mg/l. The pH of test substance was 6.4. Each of the reference substance and test substance were analysed by HPLC at 210 nm. After equilibration of the HPLC system, Urea was injected first, the reference substances were injected in duplicate, followed by the test chemical solution in duplicate. Reference substances were injected again after test sample, no change in retention time of reference substances was observed. Retention time tR were measured, averaged and the decimal logarithms of the capacity factors k were calculated. The graph was plotted between log Koc versus log k (Annex - 2).The linear regression parameter of the relationship log Koc vs log k were also calculated from the data obtained with calibration samples and therewith, log Koc of the test substance was determined from its measured capacity factor. The reference substances were chosen according to functional similarity with the test substance and calibration graph prepared. The reference substances were Acetanilide, 4-chloroaniline, 4-methylaniline(p-Tolouidine), N-methylaniline, p-toluamide Aniline, 2,5- Dichloroaniline, 4-nitrophenol, 2 - nitrophenol, 2-nitrobenzamide, 3-nitrobenzamide, Nitrobenzene, 4- Nitrobenzamide, 1-naphthylamine, 1-naphtol, Direct Red 81, Benzoic acid methylester, Carbendazim, Benzoic acid phenylester, Xylene, Ethylbenzene, Toluene, Naphthalene, 1,2,3-trichlorobenzene, Pentachlorophenol, Phenol, N,N-dimethylbenzamide, 3,5-dinitrobenzamide, N-methylbenzamide, Benzamide, phenanthrene, DDT having Koc value ranging from 1.25 to 5.63

The Log Koc value of test chemical was determined to be 2.834±0.018 at 25°C.This log Koc value indicates that the substance has a moderate sorption to soil and sediment and therefore have slow migration potential to ground water.