Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 215-710-8 | CAS number: 1344-95-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Fate in the environment
Endpoints of environmental fate and pathways are attached with a waiving argument for the following reasons:
Silicon is the second most abundant element in the earth’s crust mass (approx. 28 %) after oxygen. It appears as complex silicate minerals in soils and sediments, as the oxide (silica, SiO2) in crystalline form in rocks, soils and sand, and as biogenic silica in organisms such as diatoms, radiolarians or silicoflagellates plants such as grass, rushes, rice or sugar cane.
Released into the environment, synthetic amorphous silica and silicates - including calcium silicate - released into the environment are expected to be distributed mainly into soils and sediments, weakly into water and probably not at all in the air due to their physico-chemical properties, particularly low water solubility and very low vapour pressure.
Synthetic amorphous silica and silicates released into the environment are expected to combine indistinguishably with the soil or sediment due to their similarity with inorganic soil/sediment matter and will be subjected to natural processes under environmental conditions (cation exchange, dissolution, sedimentation).
Based on the chemical nature of synthetic amorphous silica and silicates (inorganic structure and chemical stability of the compound: Si-O bond is highly stable), no photo- or chemical degradation is expected. Biodegradation is not applicable to these inorganic substances.
The bioavailable form of synthetic amorphous silica and silicate is the dissolved form which exists exclusively as monosilicic [Si(OH)4] acid under environmental pH. In analogy to the general chemical reaction of weak acids and salts of weak acids with water, the water-soluble fraction of silica acts as a weak acid and, therefore, will tend to lower the pH value, while that of a silicate acts as a base tending to bind protons and, thus, raise the pH value by forming hydroxyl ions. But pH shifts which are measurable at high loadings under laboratory conditions are not expected to occur from the anthropogenic deposition in the aquatic environment of synthetic amorphous silicas and silicates due to low aquatic releases and sufficient natural buffer capacities. Finally, these materials are supposed to combine indistinguishably with the soil layer or sediment due to their chemical similarity with inorganic soil matter.
Dissolved silica and silicates can be actively assimilated by some marine and terrestrial organisms as normal natural processes mainly related to structural function.Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.