Registration Dossier

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Hydrolysis

On the basis of the experimental studies of the read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be ranges from 2.1 to 3.3 yrs at pH 7.0 and 78 to 121 days at pH 8.0 with a corresponding hydrolysis rate constant of 0.063L/mol-sec & 0.10L/mol-sec, respectively. Thus, based on this half-life value, test chemical can be considered to be hydrolytically stable.

Additional information

Hydrolysis

Data available for its read across chemicals has been reviewed to determine the half-life of the test chemical. The studies are as mentioned below:

 

The half-life and base catalyzed second order hydrolysis rate constant was determined using a structure estimation method of the test chemical. The second order hydrolysis rate constant of test substance was determined to be 0.063L/mol-sec with a corresponding half-lives of 3.3 yrs and 121 days at pH 7 and 8, respectively. Based on the half-life values, it is concluded that test chemical is not hydrolysable.

 

In another study, the half-life and base catalyzed second order hydrolysis rate constant was determined using a structure estimation method of the test chemical. The second order hydrolysis rate constant of test substance was determined to be 0.10L/mol-sec with a corresponding half-lives of 2.1 yrs and 78 days at pH 7 and 8, respectively. Based on the half-life values, it is concluded that test chemical is not hydrolysable.

 

On the basis of the experimental studies of the read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be ranges from 2.1 to 3.3 yrs at pH 7.0 and 78 to 121 days at pH 8.0 with a corresponding hydrolysis rate constant of 0.063L/mol-sec & 0.10L/mol-sec, respectively. Thus, based on this half-life value, test chemical can be considered to be hydrolytically stable.