Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 256-032-2 | CAS number: 42978-66-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vivo
Administrative data
- Endpoint:
- in vivo mammalian somatic cell study: cytogenicity / erythrocyte micronucleus
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 004
- Report date:
- 2004
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 474 (Mammalian Erythrocyte Micronucleus Test)
- GLP compliance:
- yes
- Type of assay:
- micronucleus assay
Test material
- Reference substance name:
- (1-methyl-1,2-ethanediyl)bis[oxy(methyl-2,1-ethanediyl)] diacrylate
- EC Number:
- 256-032-2
- EC Name:
- (1-methyl-1,2-ethanediyl)bis[oxy(methyl-2,1-ethanediyl)] diacrylate
- Cas Number:
- 42978-66-5
- Molecular formula:
- C15 H24 O6
- IUPAC Name:
- (1-methyl-1,2-ethanediyl)bis[oxy(methyl-2,1-ethanediyl)] diacrylate
Constituent 1
- Specific details on test material used for the study:
- - Physical state: liquid
- Analytical purity: >95%
- Lot/batch No.: 030061P040
- Stability under test conditions: the stability of the test substance throughout the study period and in the vehicle was verified analytically.
- Storage condition of test material: room temperature, protected from light
Test animals
- Species:
- mouse
- Strain:
- NMRI
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Charles River, Germany
- Age at study initiation: 5-8 weeks
- Weight at study initiation: 31 g (mean)
- Assigned to test groups randomly: yes, under following basis: randomization plan prepared with an appropriate computer program.
- Housing: Makrolon cages, type MI, housed individually
- Diet: ad libitum
- Water: ad libitum
- Acclimation period: at least 5 days
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 20-24°C
- Humidity (%): 30-70 %
- Photoperiod (hrs dark / hrs light): 12/12
Administration / exposure
- Route of administration:
- intraperitoneal
- Vehicle:
- - Vehicle(s)/solvent(s) used: olive oil
- Justification for choice of solvent/vehicle: Due to the limited solubility of the test substance in water, olive oil was selected as the vehicle, which had
been demonstrated to be suitable in the in vivo micronucleus test and for which historical data are available.
- Concentration of test material in vehicle: 0.875 g/100 ml; 1.75 g/100 ml and 3.5 g/100 ml - Details on exposure:
- PREPARATION OF DOSING SOLUTIONS:
The substance to be administered per kg body weight was dissolved in olive oil:
- The low dose group was given 87.5 mg test substance/kg body weight or 10 ml/kg body weight of a solution with a concentration of
0.875 g/100 ml.
- The intermediate dose group was given 175 mg test substance/kg body weight or 10 ml/kg body weight of a solution with a concentration of
1.75 g/100 ml.
- The top dose groups were given 350 mg test substance/kg body weight or 10 ml/kg body weight of a solution with a concentration of 3.5 g/100 ml. - Duration of treatment / exposure:
- one single administration
- Frequency of treatment:
- one single administration
- Post exposure period:
- 24-48 hours
Doses / concentrationsopen allclose all
- Dose / conc.:
- 87.5 mg/kg bw/day (nominal)
- Dose / conc.:
- 175 mg/kg bw/day (nominal)
- Dose / conc.:
- 350 mg/kg bw/day (nominal)
- No. of animals per sex per dose:
- 5
- Control animals:
- yes, concurrent vehicle
- Positive control(s):
- cyclophosphamide (CPP) and vincristine (VCR) both dissolved in purified water were administered to male animals once intraperitoneally each in a
volume of 10 ml/kg body weight.
- Justification for choice of positive control(s): The stability of CPP and VCR is well-defined under the selected conditions, since both positive control
articles are well-established reference clastogens and aneugens respectively.
- Route of administration: intraperitoneal
- Doses / concentrations: CPP: 20 mg/kg bw for clastogenic effects; VCR: 0.15 mg/kg bw for aneugenic effects
Examinations
- Tissues and cell types examined:
- In general, 2000 polychromatic erythrocytes (PCEs) from each of the animals of every test group are evaluated and investigated for micronuclei (MN).
The normochromatic erythrocytes (NCEs) which occur are also scored . - Details of tissue and slide preparation:
- TREATMENT AND SAMPLING TIMES:
The animals were sacrificed and the bone marrow of the two femora was prepared 24 and 48 hours after administration in the highest dose group of
350 mg/kg body weight and in the vehicle controls. In the test groups of 175 mg/kg and 87.5 mg/kg body weight and in the positive control groups,
the 24-hour sacrifice interval was investigated only.
DETAILS OF SLIDE PREPARATION:
The two femora were prepared by dissection and removing all soft tissues. After cutting off the epiphyses, the bone marrow was flushed out of the
diaphysis into a centrifuge tube using a cannula filled with fetal calf serum which was at 37°C (about 2 ml/femur). The suspension was mixed
thoroughly with a pipette, centrifuged at 300 x g for 5 minutes, the supernatant was removed and the precipitate was resuspended in about 50 µl fresh FCS. One drop of this suspension was dropped onto clean microscopic slides, using a Pasteur pipette. Smears were prepared using slides with ground edges, the preparations were dried in the air and subsequently stained.
The slides were stained in eosin and methylene blue solution for 5 minutes (May Grünwald solution modified = Wrights solution), rinsed in purified
water and then placed in fresh purified water for 2 or 3 minutes. They were finally stained in 7.5% Giemsa solution for 15 minutes.
After being rinsed twice in purified water and clarified in xylene, the preparations were mounted using Corbit-Balsam.
METHOD OF ANALYSIS:
In general, 2,000 polychromatic erythrocytes (PCEs) from each of the animals of every test group are evaluated and investigated for micronuclei (MN).
The normochromatic erythrocytes (NCEs) which occur are also scored. The following parameters are recorded:
- Number of polychromatic erythrocytes
- Number of polychromatic erythrocytes containing micronuclei
The increase in the number of micronuclei in polychromatic erythrocytes of treated animals as compared with the solvent control group provides an
index of a chromosome-breaking (clastogenic) effect or damage of the mitotic apparatus (aneugenic activity) of the substance tested.
- Number of normochromatic erythrocytes
- Number of normochromatic erythrocytes containing micronuclei
The number of micronuclei in normochromatic erythrocytes at the early sacrifice intervals shows the situation before test substance administration and may serve as a control value. A substance-induced increase in the number of micronuclei in normocytes may be found with an increase in the duration of the sacrifice intervals.
- Ratio of polychromatic to normochromatic erythrocytes
An alteration of this ratio indicates that the test substance actually reached the target. Individual animals with pathological bone marrow depression
may be identified and excluded from the evaluation.
- Number of small micronuclei (d=D/4) (d = diameter of micronucleus, D= cell diameter)
The size of micronuclei may indicate the possible mode of action of the test substance, i .e . a clastogenic or a spindle poison effect.
Slides were coded before microscopic analysis.
Since the absolute values shown have been rounded off but the calculations were made using the unedited values, deviations in the given relative
values can occur. - Evaluation criteria:
- The mouse micronucleus test is considered valid if the following criteria are met:
- The quality of the slides allowed the identification and evaluation of a sufficient number of analyzable cells, i .e. >=2000 polychromatic erythrocytes and a clear differentiation between polychromatic erythrocytes (PECs) and normochromatic erythrocytes (NECs).
-The ratio of PECs/NECs in the untreated animals (negative control) has to be within the normal range of the animal strain.
- The number of cells containing micronuclei in negative control animals has to be within the range of the historical control data both for
PECs and NECs.
- The two positive control substances have to induce a significant increase in the number of PECs containing small and large micronuclei within the
range of the historical control data or above.
A finding is considered positive if the following criteria are met:
- Significant and dose-related increase in the number of PCEs containing micronuclei.
- The number of PCEs containing micronuclei has to exceed both the concurrent negative control and the highest value of the historical control range.
A test substance is considered negative if the following criteria are met:
- The number of cells containing micronuclei in the dose groups is not significantly above the negative control and is within the historical control data. - Statistics:
- The statistical evaluation of the data was carried out using the program system MUKERN.
The asymptotic U test according to Mann-Whitney (modified rank test according to Wilcocon) was carried out to clarify the question whether there were significant differerences between the control group and dose groups with regard to the micronucleus rate in polychromatic erythrocytes.
The relative frequencies of cells containing micronuclei of each animal was used as a criterion for the rank determinatian for the U test .
Results and discussion
Test results
- Sex:
- male
- Genotoxicity:
- negative
- Toxicity:
- yes
- Remarks:
- the test substance led to clinical signs
- Vehicle controls validity:
- valid
- Negative controls validity:
- not applicable
- Positive controls validity:
- valid
Any other information on results incl. tables
As a negative control, male mice were administered merely the vehicle, olive oil,by the same route, which
gave frequencies of micronucleated
polychromatic erythrocytes within the historical control range.
Both of the positive control chemicals, i.e. cyclophosphamide for
clastogenicity and vincristine for spindle poison effects, led to the
expected increase in the rate of polychromatic erythrocytes containing
small or large micronuclei.
Animals which were administered the vehicle or the positive control
substances cyclophosphamide or vincristine did not show any clinical
signs of toxicity.
The administration of the test substance led to clinical signs, namely
piloerection and squatting posture.
According to the results of the present study, the single
intraperitoneal administration of Tripropylenglykoldiacrylat did not
lead to any increase in the number of polychromatic erythrocytes
containing either small or large micronuclei. The rate of micronuclei
was always close to the range as that of the concurrent negative control
in all dose groups and at all sacrifice intervals and within the range
of the historical control data.
A dose-dependent inhibition of erythropoiesis determined from the ratio
of polychromatic to normochromatic erythrocytes was detected from about
of 87.5 mg/kg body weight onward.
Applicant's summary and conclusion
- Conclusions:
- Thus, under the experimental conditions chosen in the study, the test substance does not have any chromosome-damaging (clastogenic) effect, and there were no indications of any impairment of chromosome distribution in the course of mitosis (aneugenic activity) in bone marrow cells in vivo.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.