Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 236-337-7 | CAS number: 13308-51-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
Boron orthophosphate (CAS 13308-51-5) is an inorganic phosphate substance. Biotic degradation is therefore not relevant for the substance. Furthermore abiotic degradation of the substance as such is an irrelevant process for inorganic substances that are assessed on an elemental basis. In all environmental compartments boron and phosphorus are present in the most stable oxidation states (as B+3 and P+5). Both ions do not undergo oxidation-reduction transformation under normal environmental conditions. Removal of boron and phosphorous from environment compartments is a function of abiotic transformation and chemical cycling, e. g. hydrolysis, precipitation, suspension, leaching, uptaking and releasing of animals and plants, etc.
As elements boron and phosphorus are persistent in environment. Boron compounds normally will be degraded or transformed to boric species and borates, the main compounds of ecological significance (Sprague 1972), which both show remarkable stability in natural aquatic systems. The chemical form of boron found in water is dictated by pH and other constituents (Sprague 1972).
Orthophosphate is available for biological metabolism without further breakdown. Besides of chemical precipitation phosphate can be biologically removed from waste water. Biological phosphate removal process is relies upon microorganisms to uptake phosphate into their cells either via anaerobic or anaerobic pathways, which is subsequently removed from the STP process as a result of sludge wasting.
References
Hem, J. D. (1970). Study and interpretation of the chemical characteristics of natural water, 2d ed. U. S. Geological Survey Water-Supply Paper 1473.
Maier, K. J., and A. W. Knight (1991). The toxicity of waterborne boron to Daphnia magna and Chironomus decorus and the effects of water hardness and sulfate on boron toxicity. Arch. Environ. Contam. Toxicol. 20: 282-287.
Sprague, R. W. (1972) The ecological significance of boron. U. S. Borax Research Corporation, Anaheim, California. 58p.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
