Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 940-783-4 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Carcinogenicity
Administrative data
Description of key information
There is no information available for the multiconsituent substance itself, this study is waived. For one of the of the two major consituents, 40% is bis(2-chloroethoxy)methane CAS 111 -91 -1, carcinogenicity has been studied.
Under the conditions of these 2-year dermal studies, there was no evidence of carcinogenic activity of bis(2-chloroethoxy) methane in male or female F344/N rats administered 75, 150, or 300 mg/kg. There was no evidence of carcinogenic activity of bis(2-chloroethoxy) methane in male B6C3F1 mice administered 150, 300, or 600 mg/kg or in female B6C3F1 mice administered 100, 200, or 400 mg/kg.
Administration of bis(2-chloroethoxy) methane for 2 years resulted in increased incidences of nonneoplastic lesions in the nose of male and female rats, the forestomach of male rats, the heart of male and female mice, and the forestomach and skin of male mice.
The LOAEL for degeneration of the olfactory epithelium and inflammation and ulcers of the forestomach in rats is 75 mg/kg bw/day. In the report (NTP TR 536, 2011) these effects are not explained. It seems unlikely that these effects have occurred via the dermal application of the test substance. However in the report no specific details on the application of the test substance on the skin can be found. If the study was performed in line with the general NTP protocol this means that the treatment was left area uncovered. In toxicokinetic studies it has been shown that up to 50% of the total dose volatilized from the skin of some animals during 24-hour experiments (Black 2007). It therefore could the animals have ingested and/or inhaled the test substance leading to these effects.
Key value for chemical safety assessment
Justification for classification or non-classification
There is no information available for the multiconsituent substance itself, this study is waived. Under the conditions of 2 -year dermal studies in rats and mice, there was no evidence of carcinogenic activity of the major consituent CAS 111 -91 -1, bis(2-chloroethoxy)methane.
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.