Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 208-764-9 | CAS number: 541-02-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Biodegradation in water and sediment: simulation tests
Administrative data
Link to relevant study record(s)
Description of key information
Biodegradation in water and sediment: simulation tests: half-lives 1200 days (aerobic conditions) and 3100 days (anaerobic conditions) at 24°C. In the exposure assessment a degradation half-life in bulk sediment of 3100 days will be used as a worse case.
Key value for chemical safety assessment
Additional information
Degradation in sediment has been shown to be slow and may be predominantly abiotic. D5 degrades in sediment to form hydrolytic products and mineralisation rate is likely to be very slow.
Sediment degradation half-lives of 1200 days under aerobic conditions at 24°C and 3100 days under anaerobic conditions at 24°C were determined in a reliable study conducted according to an appropriate test protocol, and in compliance with GLP.
The major degradation products, under aerobic and anaerobic conditions, were dimethylsilanediol and non-extractable silanols, while carbon dioxide and methane generation was minimal, indicating complete mineralisation of D5 or its degradation products is very slow.
Under aerobic conditions, D5 degradation in non-sterilised samples was significantly faster than that in the chemically sterilised samples, suggesting that the degradation of D5 in the sediment might not be purely abiotic.
The studies were carried out using a modified version of the OECD Guideline 308 (Aerobic and Anaerobic Transformation in Aquatic Sediment Systems), to account for the combination of high air/water partitioning coefficient and low water solubility of the substance.
The method development study for the adapted OECD 308 method was developed by Xu and Miller (report completed 2012).
Reference: Xu S, Miller J (2012) Non-regulated study: Method development for determining aerobic/anaerobic degradation rates of D4 and D5 in water and sediment system. Study no. 10714 -108. Health and Environmental Sciences, Dow Corning Corporation, 2200 West Salzburg Road, Auburn, MI 49611. Sponsor: CES.
The chemical safety assessment according to REACH Annex I indicates that it is not necessary to conduct the simulation test on ultimate degradation in surface water, because the substance is highly insoluble in water. In addition, in accordance with Column 2 of REACH Annex IX, the simulation test on ultimate degradation in surface water does not need to be conducted as the chemical safety assessment according to Annex I indicates that this is not necessary.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.