Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 211-334-3 | CAS number: 638-38-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Description of key information
Additional information
The major pool of manganese in soils originates from crustal sources, with other sources including direct atmospheric deposition, wash-off from plant and other surfaces, leaching from plant tissues, and the shedding or excretion of materials such as leaves, dead plant and animal excrement.
Natura (“ background”) levels of total manganese in soils range from >1-4.000 mg/kg dry weight; with mean values around 300-600 mg/kg dry weight.
Manganese concentration in air tend to be lowest in remote location (about 0.5-14 ng/ m3) on average, higher in rural areas (40ng/m3on average), and still higher in urban areas (about 65-166 ng/m3on average). Manganese concentrations in air tend to be highest in source-dominant areas, where values can reach 8,000ng/m3). Annual averages of manganese concentrations may rise to 200-300ng/m3 in air near foundries and to over 500 ng/m3 in air near ferro-and silico-manganese industries
The major anthropogenic sources of environmental manganese include municipal wastewater discharges, sewage sludge, mining and mineral processing, emissions from alloy, steel and Bioaccumulation in iron production, combustion of fossil fuels, and, to a much lesser extend, emissions from the combustion of fuel additives.
Manganese is released to air mainly as particulate matter, and the fate and transport of the particles depend on their size and density and on wind speed and direction. Some manganese compounds are readily soluble in water. Manganese exists in the aquatic environment in two main forms: Mn(II) and Mn(IV). Transition between these two forms occurs via oxidation and reduction reactions that may be abiotic or microbially mediated.
The environmental chemistry of manganese is largely governed by pH and redox conditions; Mn(II) dominates at lower pH and redox potential, with an increasing proportion of colloidal manganese oxyhydroxides above pH 5.5 in non-dystrophic waters. Chemical factors controlling sedimentary manganese cycling are the oxygen content of the overlying water, the penetration of oxygen into the sediments, the benthic organic carbon supply. Manganese in soil can migrate as particulate matter to air or water, or soluble manganese compounds can be leached from the soil. In soils manganese solubility is determined by two variables: pH and redox potential.
Manganese in water
Concentrations of dissolved manganese in natural water that are essential free of anthropogenic inputs can range from 10 to 10.000µg/litre. However, dissolved manganese concentrations in natural surface waters rarely exceed 1.000µg/litreand are usually less than 200µg/litre Manganese in aquatic and terrestrial plants
Concentrations in seaweed range from 130-750 mg/kg dry weight, whereas concentrations in shellfish range from 3-660 mg/kg/dry weight; higher concentrations in shellfish are associated with manganese- rich sediment. Concentrations of manganese found in tissue of marine and freshwater fish tend to range from 0.2 to 19 mg/kg dry weight. Higher manganese concentrations- above 100 mg/kg dry weight-have been reported for fish in polluted surface waters.
Manganese in plants and wildlife
Concentrations of manganese in terrestrial plants tend to range from 20 to 500 mg/kg dry weight. Members of the Ericaceae family, which includes blueberries, are regarded as manganese accumulators. There are numerous reports of foliar manganese levels in excess of 2,000-4,000 mg/kg.
Mean manganese concentrations in bird´s eggs from a variety of geographical areas range from 1 to5 mg/kg dry weight, mean liver concentrations range from 3 to 11 mg/kg dry weight, and mean feather concentrations reach from 0.3 to 40 mg/kg dry weight. Mean manganese concentrations of up to 17 mg/kg dry weight have been found in tissues (liver, kidney and whole body) from a variety of reptiles and wild mammals.
Manganese is an essential nutrient for micro-organisms, plants and animals. Nutritional manganese requirements for terrestrial plants are around 10 - 50 mg/kg tissue. Critical nutritional levers vary widely between species and among cultivars of a species. Calcareous soils, especially those with poor drainage and high organic matter, are the types of soils that produce manganese deficient plants. Symptoms of manganese plants vary widely with species and include marginal chloroses, necrotic lesions and distorted development of the leaves. Toxic manganese concentrations in crop plant tissue vary widely, with critical values ranging from 100 to 5,000 mg/kg. Manganese toxicity is a major factor limiting crop growth on acidic, poorly drained, or steam-sterilized mineral soils. There is a wide range of variation in tolerance to manganese between and within plant species.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
