Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 211-334-3 | CAS number: 638-38-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Manganese is a natural occurring element that is found in rock, soil, and water. It exists in the environment only in its insoluble compounds, especially as oxides or carbonates, or as mixed in form of oxides/carbonates. It is ubiquitous in the environment and comprises about 0.1% of the Earth crust. Crustal rock is a major source of manganese found in the atmosphere. Ocean spray, forest fires, vegetation, and volcanic activity are other major natural atmospheric sources of manganese. Important sources of dissolved manganese are anaerobic environments where particulate manganese oxides are reduced, the direct reduction of particulate manganese oxides in aerobic environments, the natural weathering of Mn(II)-containing minerals, and acidic environments. Manganese exists in the aquatic environment in two main forms: Mn(II) and Mn(IV). The Mn(II) exist as Hexahydrate. Transition between these two forms occurs via oxidation and reduction reactions that may be abiotic or microbially mediated.
The environmental chemistry of manganese is largely governed by pH and redox conditions; Mn(II) dominates at lower pH and redox potential, with an increasing proportion of colloidal manganese oxyhydroxides above pH 5.5 in non-dystrophic waters. Chemical factors controlling sedimentary manganese cycling are the oxygen content of the overlying water, the penetration of oxygen into the sediments, the benthic organic carbon supply. Manganese in soil can migrate as particulate matter to air or water, or soluble manganese compounds can be leached from the soil. In soils manganese solubility is determined by two variables: pH and redox potential.
The major pool of manganese in soils originates from crustal sources, with other sources including direct atmospheric deposition, wash-off from plant and other surfaces, leaching from plant tissues, and the shedding or excretion of materials such as leaves, dead plant and animal excrement.
Manganese concentration in air tend to be lowest in remote location (about 0.5-14 ng/ m³) on average, higher in rural areas (40 ng/m³ on average), and still higher in urban areas (about 65-166 ng/m³ on average ). Manganese concentrations in air tend to be highest in source-dominant areas, where values can reach 8,000ng/m3 ). Annual averages of manganese concentrations may rise to 200-300 ng/m³ in air near foundries and to over 500 ng/m³ in air near ferro- and silico-manganese industries.
Manganese is a transition metal and therefore it cannot degraded in the environment. It can change its oxidation value states, it can form different compounds but it cannot be degraded.
In contrast, the acetate-ion /the acetic acid can be transformed by biotic and by abiotic processes in the environment. By photodegradation (sunlight /OH as sensitizer) ca. 50% is degraded in 21 day) Under aerobic conditions (OECD Guideline 301D) acetic acid is “ready biodegradable”. In air acetic acid will be converted to carbon dioxide, in microbes the acetic acid forms “activated acetate” and takes part in the normal metabolism and at the end it forms carbon dioxide, too.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.