Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 245-022-3 | CAS number: 22473-78-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Short-term toxicity to fish
Administrative data
Link to relevant study record(s)
Description of key information
With high probability the test substance is acutely not harmful to fish.
Key value for chemical safety assessment
Additional information
The toxicity of EDTA on fish highly depends on water hardness, pH and metal speciation [EU Risk Assessment, 2004]. The toxicity of EDTA complexes to bluegill was determined in a key study performed by Batchelder et al. (1980), which take into account the water hardness and pH. The revealed LC50 -values are in a range of 41 mg/L to 2070 mg/L.
Two consequences can be drawn. First, the tests performed with the acid form lead to very low pH values under test conditions. A pH of 4 alone leads to toxicity in bluegill. The low LC50 value in very soft water can be explained by a surplus of uncomplexed EDTA which was present in the test media. This is not expected in the environment; therefore the results derived by soft water hardness and/or pH <4 are not relevant for the assessment.
The 96-hour LC50 value of (NH4)4EDTA was determined to be 705 mg/L. at pH 8. The toxicity is driven by ammonia.
At pH 8 ca. 5.3 % of the total ammonia are present as free ammonia, resulting in a NH3 concentration of 2.3 mg/L. Generally a NH3 concentration above 1 mg/L can be considered as toxic alone to fish. Thus, the results of the experiment with (NH4)4 EDTA are also not relevant for the risk assessment.Consequently the LC50 of EDTA is estimated to be higher 1000 mg/L, due to the fact that this predicted value represents the lowest LC50 at acceptable pH which has been performed in natural not synthetic water. The results indicate that for complexed and non complexed EDTA no need for classification as dangerous for the environment. Further on, the results show that the toxicity of complexes with the toxic metals Cu and Zn is in the same concentration range as the uncomplexed EDTA. Chelates with non-toxic metals (Mn, Ca, Mg) are much less toxic. For justification for read-across please refer to IUCLID 5, Chapter 13.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.

EU Privacy Disclaimer
This website uses cookies to ensure you get the best experience on our websites.