Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 500-078-0 | CAS number: 31923-84-9 1 - 4.5 moles propoxylated
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Key value for chemical safety assessment
Additional information
ETHANE-1,2-DIOL, PROPOXYLATED, 1-4.5 MOL PROPOXYLATED (CAS31923-84-9; EU NLP 500-078-0) AND 2,2’-OXYDIETHANOL, PROPOXYLATED, 1-4.5 MOL PROPOXYLATED (CAS9051-51-8; EU NLP 500-031-4)
These two core substances are so closely related structurally that they are best examined together.
There are no experimental studies on the toxicokinetics of propoxylated ethane-1,2-diol or propoxylated 2,2’-oxydiethanol. The toxicokinetics of the core substances and the repeating unit are summarised in Illing and Barratt (2007 revised 2009). Both core substances have two free hydroxy groups, thus NLP polyols are likely to consist predominantly of chains of between one and two repeating units, with some chains containing three repeating units.
For the calculations of bioavailability of the commercial NLP polyol, logP values were calculated using the incremental fragment method of Suzuki and Kudo (1990). The propoxy groups have an important effect on the toxicity by modulating any toxicity arising from the core substance. The substitution of a hydroxyl group on a core compound by a propoxy group increases its logP value by 0.24 units and its molecular weight by 58Daltons. The combined effect of these changes is to reduce the bioavailability by a factor of 1.53 (calculated using the Potts and Guy equation). MEG + 3PO indicates the component representing the mean toxicity.
Given the vapour pressure and water solubility of the commercial preparation, it is likely that absorption of some of the lower molecular weight components may occur via the lung.
Ethane1,2-diol, oxydiethanol, 2,2’-(ethylenedioxy)diethanol, propane-1,2-diol, oxydipropanol and [(methylethylene)bis(oxy)]dipropanol are absorbed, probably by passive diffusion, when administered orally. Thus it is probable that low number oligomers will be absorbed. The calculated logP suggests that the component representing the mean toxicity of the commercial preparation is likely to be absorbed orally.
Given the logP values, it is likely that any absorbed oligomers of propoxylated etahne-1,2-diol or 2,2’-oxydiethanol will be widely distributed in the body. As metabolism is likely, it is unlikely that they will accumulate in tissues.
In the event that higher molecular weight material is absorbed, it is likely to be excreted in bile. Lower molecular weight unmetabolised oligomer is likely to be excreted in urine. In rat the molecular weight threshold for biliary excretion is around 350, in human it is about 500 (Illing, 1989). The material most likely to be absorbed is likely to be hydrolysed and the products appear in urine. Some carbon dioxide might be formed from hydrolysis of the propane-1,2-diol groups and exhaled.
Based on information from ethane-1,2-diol, oxydiethanol, and (ethylenedioxy)diethanol, propane-1,2-diol, oxydipropanol and [(methylethylene)bis(oxy)]dipropanol it is likely some material may be hydrolysed, some oxidation of one or both of the terminal alcohol groups to the corresponding mono and di-carboxylic acids may occure or, possibly some conjugation of the terminal alcohol groups with glucuronic acid and/or sulphate may also be possible. At low doses some further metabolism to carbon dioxide may occur.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.