Registration Dossier

Diss Factsheets

Toxicological information

Basic toxicokinetics

Currently viewing:

Administrative data

Endpoint:
basic toxicokinetics in vivo
Type of information:
migrated information: read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
supporting study
Reliability:
2 (reliable with restrictions)

Data source

Reference
Reference Type:
review article or handbook
Title:
Dictionary of Substances and their effects (DOSE), Dictionary of Substances and their effects (DOSE)
Author:
RSC Publishing
Year:
2011

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
other:
Principles of method if other than guideline:
Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16∶0), octadecanoic acid (18∶0),cis-9-octadecenoic acid (9c–18∶1),cis-9,cis-12-octadecadienoic acid (9c, 12c–18∶2) andcis-12,trans-15-octadecadienoic acid (12c,15t–18∶2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation.
GLP compliance:
no

Test material

Radiolabelling:
yes
Remarks:
deuterium

Test animals

Sex:
male

Administration / exposure

Route of administration:
oral: feed

Results and discussion

Preliminary studies:
Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t–18∶2 was metabolically more similar to saturated and 9c–18∶1 fatty acids than to 9c,12c–18∶2 (iv) relative incorporation of 9c,12c–18∶2 into phospholipids did not increase proportionally with an increase of 9c,12c–18∶2 in the mixture of deuterated fats fed; (v) absorption of 16∶0, 18∶0, 9c–18∶1, 9c,12c–18∶2 and 12c,15t–18∶2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c–18∶2.
These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c–18∶2 is limited. These results suggest that nutritional benefits of diets high in 9c,12c–18∶2 may be of little value to normal subjects and that the 12c,15t–18∶2 isomer in hydrogenated fat is not a nutritional liability at the present dietary level.

Applicant's summary and conclusion

Conclusions:
Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t–18∶2 was metabolically more similar to saturated and 9c–18∶1 fatty acids than to 9c,12c–18∶2 (iv) relative incorporation of 9c,12c–18∶2 into phospholipids did not increase proportionally with an increase of 9c,12c–18∶2 in the mixture of deuterated fats fed; (v) absorption of 16∶0, 18∶0, 9c–18∶1, 9c,12c–18∶2 and 12c,15t–18∶2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c–18∶2.
These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c–18∶2 is limited. These results suggest that nutritional benefits of diets high in 9c,12c–18∶2 may be of little value to normal subjects and that the 12c,15t–18∶2 isomer in hydrogenated fat is not a nutritional liability at the present dietary level.
Executive summary:

Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16∶0), octadecanoic acid (18∶0), cis -9-octadecenoic acid (9c–18∶1), cis -9, cis -12-octadecadienoic acid (9c, 12c–18∶2) and cis -12, trans -15-octadecadienoic acid (12c,15t–18∶2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation. Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t–18∶2 was metabolically more similar to saturated and 9c–18∶1 fatty acids than to 9c,12c–18∶2 (iv) relative incorporation of 9c,12c–18∶2 into phospholipids did not increase proportionally with an increase of 9c,12c–18∶2 in the mixture of deuterated fats fed; (v) absorption of 16∶0, 18∶0, 9c–18∶1, 9c,12c–18∶2 and 12c,15t–18∶2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c–18∶2. These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c–18∶2 is limited. These results suggest that nutritional benefits of diets high in 9c,12c–18∶2 may be of little value to normal subjects and that the 12c,15t–18∶2 isomer in hydrogenated fat is not a nutritional liability at the present dietary level.