Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Hydrolysis

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be ranges from 38 days to 5.0 yrs, at pH range 4-9 and a temperature of 25°C or 50°C, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.

Biodegradation in water

42-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2017). The study was performed at a temperature of 20°C. The test system included control, test item and reference item. Domestic waste water containing surface soil and soil samples was used as a test inoculum for this study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l . OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The % degradation of procedure control (reference item) was also calculated using the values BOD & ThOD was determined to be 64.45%. Degradation of Sodium Benzoate exceeds 39.15% on 7 days & 52.4% on 14th day. The activity of the inoculum was thus verified and the test can be considered as valid. The BOD42 value of test chemical was observed to be 0.21 mgO2/mg. ThOD was calculated as 1.99 mgO2/mg. Accordingly, the % degradation of the test chemical after 42 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 10.55%. Based on the results, the test chemical, under the test conditions, was considered to be not readily biodegradable in nature.

Biodegradation in water and sediment

Estimation Programs Interface (2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 18.8% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.129%), indicates that test chemical is not persistent in sediment.

 

Biodegradation in soil

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (2018). If released into the environment, 81.1% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.

Adsorption / desorption

The adsorption coefficient Koc in soil and in sewage sludge of test chemical was determined by the Reverse Phase High Performance Liquid Chromatographic method according to OECD Guideline No. 121 for testing of Chemicals (Experimental study report, 2018). The solutions of the test substance and reference substances were prepared in appropriate solvents. A test item solution was prepared by accurately weighing 5 mg of test item and diluted with Acetonitrile up to 10 ml. Thus, the test solution concentration was 500 mg/l. The pH of test substance was 5.07. Each of the reference substance and test substance were analysed by HPLC at 210 nm. After equilibration of the HPLC system, Urea was injected first, the reference substances were injected in duplicate, followed by the test chemical solution in duplicate. Reference substances were injected again after test sample, no change in retention time of reference substances was observed. Retention time tR were measured, averaged and the decimal logarithms of the capacity factors k were calculated. The graph was plotted between log Koc versus log k(Annex - 2).The linear regression parameter of the relationship log Koc vs log k were also calculated from the data obtained with calibration samples and therewith, log Koc of the test substance was determined from its measured capacity factor. The reference substances were chosen according to estimated Koc range of the test substance and generalized calibration graph was prepared. The reference substances were Acetanilide, 4-chloroaniline, 4-methylaniline(p-Tolouidine), N-methylaniline, p-toluamide, Aniline, 2,5 -Dichloroaniline, 4 -nitrophenol, 2 - nitrophenol, 2-nitrobenzamide, 3-nitrobenzamide, Nitrobenzene, 4 -Nitrobenzamide, 1-naphthylamine, 1-naphtol, Direct Red 81, Benzoic acid methylester, Carbendazim, Benzoic acid phenylester, Xylene, Ethylbenzene, Toluene, Naphthalene, 1,2,3-trichlorobenzene, Pentachlorophenol, Phenol, N,N-dimethylbenzamide, 3,5-dinitrobenzamide, N-methylbenzamide, Benzamide, phenanthrene, DDT having Koc value ranging from 1.25 to 5.63. The Log Koc value of test chemical was determined to be 1.810 ± 0.002at 25°C. This log Koc value indicates that the test chemical has a low sorption to soil and sediment and therefore have moderate migration potential to ground water.

Additional information

Hydrolysis

Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical. The studies are as mentioned below:

 

The base catalyzed second order hydrolysis rate constant and half-life value of test chemical was determined using a structure estimation method. The second order hydrolysis rate constant was determined to be 0.04 L/mol-sec with a corresponding half-life of 5 years and 200 days at pH 7 and 8, respectively. Based on the half-life values, it is concluded that the test chemical is not hydrolysable.

 

In an another study, the half-life of the test chemical was determined using an estimated pseudo-first order hydrolysis rate constant of 0.00000021/sec. The half-life of test chemical was determined to be 38 days at pH 7 and a temperature of 25°C, respectively. Based on the half-life values, it is concluded that the test chemical is not hydrolysable.

 

For the test chemical, the half-life of the test chemical was determined. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH). Percentage degradation of test chemical was determined to be 3.91%, 1.085% and 4.78% at pH 4.0, 7.0 and 9.0 & at a temperature of 50°C, respectively and the half-life value of test chemical was determined to be > 1 yr. Since the chemical is not degradable less than 10 % in this test condition, it is presumably stable in water. Thus based on this, test chemical is considered to be not hydrolysable in water.

 

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be ranges from 38 days to 5.0 yrs, at pH range 4-9 and a temperature of 25°C or 50°C, respectively. Thus, based on this half-life value, it can be concluded that the test chemical is not hydrolysable in water.

Biodegradation in water

42-days Closed Bottle test following the OECD guideline 301 D to determine the ready biodegradability of the test chemical (Experimental study report, 2017). The study was performed at a temperature of 20°C. The test system included control, test item and reference item. Domestic waste water containing surface soil and soil samples was used as a test inoculum for this study. The concentration of test and reference item (Sodium Benzoate) chosen for both the study was 4 mg/L, while that of inoculum was 32 ml/l . OECD mineral medium was used for the study. ThOD (Theoretical oxygen demand) of test and reference item was determined by calculation. % degradation was calculated using the values of BOD and ThOD for test item and reference item. The % degradation of procedure control (reference item) was also calculated using the values BOD & ThOD was determined to be 64.45%. Degradation of Sodium Benzoate exceeds 39.15% on 7 days & 52.4% on 14th day. The activity of the inoculum was thus verified and the test can be considered as valid. The BOD42 value of test chemical was observed to be 0.21 mgO2/mg. ThOD was calculated as 1.99 mgO2/mg. Accordingly, the % degradation of the test chemical after 42 days of incubation at 20 ± 1°C according to Closed Bottle test was determined to be 10.55%. Based on the results, the test chemical, under the test conditions, was considered to be not readily biodegradable in nature.

Biodegradation in water and sediment

Estimation Programs Interface (2018) prediction model was run to predict the half-life in water and sediment for the test chemical. If released in to the environment, 18.8% of the chemical will partition into water according to the Mackay fugacity model level III and the half-life period of test chemical in water is estimated to be 15 days (360 hrs). The half-life (15 days estimated by EPI suite) indicates that the chemical is not persistent in water and the exposure risk to aquatic animals is moderate to low whereas the half-life period of test chemical in sediment is estimated to be 135 days (3240 hrs). However, as the percentage release of test chemical into the sediment is less than 1% (i.e, reported as 0.129%), indicates that test chemical is not persistent in sediment.

 

Biodegradation in soil

The half-life period of test chemical in soil was estimated using Level III Fugacity Model by EPI Suite version 4.1 estimation database (2018). If released into the environment, 81.1% of the chemical will partition into soil according to the Mackay fugacity model level III. The half-life period of test chemical in soil is estimated to be 30 days (720 hrs). Based on this half-life value of test chemical, it is concluded that the chemical is not persistent in the soil environment and the exposure risk to soil dwelling animals is moderate to low.

On the basis of available information, the test chemical can be considered to be not readily biodegradablein nature.

Adsorption / desorption

The adsorption coefficient Koc in soil and in sewage sludge of test chemical was determined by the Reverse Phase High Performance Liquid Chromatographic method according to OECD Guideline No. 121 for testing of Chemicals (Experimental study report, 2018). The solutions of the test substance and reference substances were prepared in appropriate solvents. A test item solution was prepared by accurately weighing 5 mg of test item and diluted with Acetonitrile up to 10 ml. Thus, the test solution concentration was 500 mg/l. The pH of test substance was 5.07. Each of the reference substance and test substance were analysed by HPLC at 210 nm. After equilibration of the HPLC system, Urea was injected first, the reference substances were injected in duplicate, followed by the test chemical solution in duplicate. Reference substances were injected again after test sample, no change in retention time of reference substances was observed. Retention time tR were measured, averaged and the decimal logarithms of the capacity factors k were calculated. The graph was plotted between log Koc versus log k(Annex - 2).The linear regression parameter of the relationship log Koc vs log k were also calculated from the data obtained with calibration samples and therewith, log Koc of the test substance was determined from its measured capacity factor. The reference substances were chosen according to estimated Koc range of the test substance and generalized calibration graph was prepared. The reference substances were Acetanilide, 4-chloroaniline, 4-methylaniline(p-Tolouidine), N-methylaniline, p-toluamide, Aniline, 2,5 -Dichloroaniline, 4 -nitrophenol, 2 - nitrophenol, 2-nitrobenzamide, 3-nitrobenzamide, Nitrobenzene, 4 -Nitrobenzamide, 1-naphthylamine, 1-naphtol, Direct Red 81, Benzoic acid methylester, Carbendazim, Benzoic acid phenylester, Xylene, Ethylbenzene, Toluene, Naphthalene, 1,2,3-trichlorobenzene, Pentachlorophenol, Phenol, N,N-dimethylbenzamide, 3,5-dinitrobenzamide, N-methylbenzamide, Benzamide, phenanthrene, DDT having Koc value ranging from 1.25 to 5.63. The Log Koc value of test chemical was determined to be 1.810 ± 0.002at 25°C. This log Koc value indicates that the test chemical has a low sorption to soil and sediment and therefore have moderate migration potential to ground water.