Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

4-(Diethylamino)-alpha,alpha-bis(4-(diethylamino)phenyl)benzenemethanol is not likely to be mutagenic in vitro.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
The supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: Prediction is done using QSAR Toolbox version 3.4
Principles of method if other than guideline:
Prediction is done using QSAR Toolbox version 3.4
GLP compliance:
no
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of test material: p,p',p''-tris(diethylamino)trityl alcohol
- Molecular formula: C31H43N3O
- Molecular weight: 473.701 g/mol
- Smiles notation: OC(c1ccc(N(CC)CC)cc1)(c1ccc(N(CC)CC)cc1)c1ccc(N(CC)CC)cc1
- Substance type: Organic
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 100
Details on mammalian cell type (if applicable):
not specified
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
not specified
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation system
Test concentrations with justification for top dose:
not specified
Vehicle / solvent:
not specified
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Positive control substance:
not specified
Remarks:
not specified
Details on test system and experimental conditions:
not specified
Rationale for test conditions:
not specified
Evaluation criteria:
The plates were observed for a dose dependent increase in the number of revertants
Statistics:
not specified
Species / strain:
S. typhimurium TA 100
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
not specified

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 6 nearest neighbours
Domain  logical expression:Result: In Domain

((((("a" or "b" or "c" or "d") and("e" and(not "f")) ) and("g" and(not "h")) ) and("i" and(not "j")) ) and("k" and "l") )

Domain logical expression index: "a"

Referential boundary:The target chemical should be classified as Aliphatic Carbon [CH] AND Aliphatic Carbon [-CH2-] AND Aliphatic Carbon [-CH3] AND Aliphatic Nitrogen, one aromatic attach [-N] AND Amino, aliphatic attach [-N<] AND Aromatic Carbon [C] AND Olefinic carbon [=CH- or =C<] by Organic functional groups (US EPA)

Domain logical expression index: "b"

Referential boundary:The target chemical should be classified as Amine AND Anion AND Aromatic compound AND Cation AND Tertiary amine AND Tertiary mixed amine by Organic functional groups, Norbert Haider (checkmol)

Domain logical expression index: "c"

Referential boundary:The target chemical should be classified as Alkene AND Ammonium salt AND Aromatic amine AND Aryl by Organic Functional groups

Domain logical expression index: "d"

Referential boundary:The target chemical should be classified as Alkene AND Ammonium salt AND Aromatic amine AND Overlapping groups by Organic Functional groups (nested)

Domain logical expression index: "e"

Referential boundary:The target chemical should be classified as No alert found by DNA binding by OASIS v.1.4

Domain logical expression index: "f"

Referential boundary:The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Quinoneimines OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Nucleophilic addition reaction with cycloisomerization OR AN2 >> Nucleophilic addition reaction with cycloisomerization >> Hydrazine Derivatives OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds >> Alpha, Beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Alpha, Beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Haloalkane Derivatives with Labile Halogen OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinolone Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation >> Five-Membered Aromatic Nitroheterocycles OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> C-Nitroso Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Diazenes and Azoxyalkanes OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrobiphenyls and Bridged Nitrobiphenyls OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR Radical >> ROS formation after GSH depletion (indirect) OR Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN1 >> Direct nucleophilic attack on diazonium cation (DNA alkylation) OR SN1 >> Direct nucleophilic attack on diazonium cation (DNA alkylation) >> Diazenes and Azoxyalkanes OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Acyclic Triazenes OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrosonium cation formation OR SN1 >> Nucleophilic attack after nitrosonium cation formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrobiphenyls and Bridged Nitrobiphenyls OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation >> C-Nitroso Compounds OR SN1 >> Nucleophilic substitution on diazonium ion OR SN1 >> Nucleophilic substitution on diazonium ion >> Specific Imine and Thione Derivatives OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> N-Hydroxylamines OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation OR SN2 >> Alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after cyclization OR SN2 >> Alkylation, direct acting epoxides and related after cyclization >> Nitrogen and Sulfur Mustards OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct nucleophilic attack on diazonium cation OR SN2 >> Direct nucleophilic attack on diazonium cation >> Hydrazine Derivatives OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group >> N-Acetoxyamines by DNA binding by OASIS v.1.4

Domain logical expression index: "g"

Referential boundary:The target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion formation AND SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary:The target chemical should be classified as Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> 5-alkoxyindoles OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-Michael addition OR No alert found OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Aromatic phenylureas OR SN1 >> Nitrenium Ion formation >> Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Secondary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary (unsaturated) heterocyclic amine  OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic azo OR SN2 OR SN2 >> SN2 at an sp3 Carbon atom OR SN2 >> SN2 at an sp3 Carbon atom >> Aliphatic halides by DNA binding by OECD

Domain logical expression index: "i"

Referential boundary:The target chemical should be classified as AN2 AND AN2 >> Michael-type addition to quinoid structures  AND AN2 >> Michael-type addition to quinoid structures  >> N-Substituted Aromatic Amines by Protein binding by OASIS v1.4

Domain logical expression index: "j"

Referential boundary:The target chemical should be classified as Acylation OR Acylation >> Direct acylation involving a leaving group OR Acylation >> Direct acylation involving a leaving group >> Carbamates  OR Acylation >> Ester aminolysis or thiolysis OR Acylation >> Ester aminolysis or thiolysis >> Carbamates  OR AN2 >> Michael addition to activated double bonds OR AN2 >> Michael addition to activated double bonds >> alpha,beta-Unsaturated Carbonyls and Related Compounds OR AN2 >> Michael-type addition to quinoid structures  >> Substituted Phenols OR AN2 >> Nucleophilic addition to pyridonimine tautomer of aminopyridoindoles or aminopyridoimidazoles (hypothesized) OR AN2 >> Nucleophilic addition to pyridonimine tautomer of aminopyridoindoles or aminopyridoimidazoles (hypothesized) >> Heterocyclic Aromatic Amines OR Michael addition OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group OR Michael addition >> Michael addition on conjugated systems with electron withdrawing group >> Cyanoalkenes OR No alert found OR Nucleophilic addition OR Nucleophilic addition >> Addition to carbon-hetero double bonds OR Nucleophilic addition >> Addition to carbon-hetero double bonds >> Ketones OR Radical reactions OR Radical reactions >> ROS generation and direct attack of hydroxyl radical to the C8 position of nucleoside base OR Radical reactions >> ROS generation and direct attack of hydroxyl radical to the C8 position of nucleoside base >> Heterocyclic Aromatic Amines OR SE reaction (CYP450-activated heterocyclic amines) OR SE reaction (CYP450-activated heterocyclic amines) >> Direct attack of arylnitrenium cation to the C8 position of nucleoside base  OR SE reaction (CYP450-activated heterocyclic amines) >> Direct attack of arylnitrenium cation to the C8 position of nucleoside base  >> Heterocyclic Aromatic Amines OR SN1 OR SN1 >> Carbenium ion formation (enzymatic) OR SN1 >> Carbenium ion formation (enzymatic) >> Carbenium ion OR SR reaction (peroxidase-activated heterocyclic amines) OR SR reaction (peroxidase-activated heterocyclic amines) >> Direct attack of arylnitrenium radical to the C8 position of nucleoside base OR SR reaction (peroxidase-activated heterocyclic amines) >> Direct attack of arylnitrenium radical to the C8 position of nucleoside base >> Heterocyclic Aromatic Amines by Protein binding by OASIS v1.4

Domain logical expression index: "k"

Parametric boundary:The target chemical should have a value of log Kow which is >= -0.835

Domain logical expression index: "l"

Parametric boundary:The target chemical should have a value of log Kow which is <= 4.38

Conclusions:
p,p',p''-tris(diethylamino)trityl alcohol failed to induce mutation in Salmonella typhimurium strain TA100 in the presence of S9 metabolic activation system and hence is predicted to not classify as a gene mutant in vitro.
Executive summary:

Gene mutation toxicity was predicted for p,p',p''-tris(diethylamino)trityl alcohol using SSS QSAR prediction database, 2016. The study assumed the use of Salmonella typhimurium strain TA100 with S9 metabolic activation system. p,p',p''-tris(diethylamino)trityl alcohol failed to induce mutation in Salmonella typhimurium strain TA100 in the presence of S9 metabolic activation system and hence is predicted to not classify as a gene mutant in vitro.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Description of key information

4-(Diethylamino)-alpha,alpha-bis(4-(diethylamino)phenyl)benzenemethanol is not likely to be mutagenic in vitro.

Additional information

Gene mutation in vitro:

Data from target chemical and its read across chemicals have been reviewed and summarized to determine the mutagenic nature of 4-(Diethylamino)-alpha,alpha-bis(4-(diethylamino)phenyl)benzenemethanol:

Gene mutation toxicity was predicted for p,p',p''-tris(diethylamino)trityl alcohol (CAS no 596 -49 -6) using SSS QSAR prediction database, 2016. The study assumed the use of Salmonella typhimurium strain TA100 with S9 metabolic activation system. p,p',p''-tris(diethylamino)trityl alcohol failed to induce mutation in Salmonella typhimurium strain TA100 in the presence of S9 metabolic activation system and hence is predicted to not classify as a gene mutant in vitro.

Gene mutation toxicity was predicted for p,p',p''-tris(diethylamino)trityl alcohol (CAS no 596 -49 -6) using SSS QSAR prediction database, 2016. The study assumed the use of Salmonella typhimurium strain TA1535 without S9 metabolic activation system. p,p',p''-tris(diethylamino)trityl alcohol failed to induce mutation in Salmonella typhimurium strain TA1535 in the absence of S9 metabolic activation system and hence is predicted to not classify as a gene mutant in vitro.

Gene mutation toxicity study was performed (U. S. Department of Health and Human Services, 2004) to evaluate the mutagenic nature of Malachite Green (RA CAS no 569 -64 -2). The study was performed as per the protocol given by Zeiger et al. The material was used at dose levels of 0, 0.1, 0.3, 1.0, 3.3 or 10.0 µg/plate using Salmonella typhimurium strains TA97, TA98, TA100, TA102, TA104, or TA1535 with or without S9 metabolic activation. Preincubation assay was performed and the plates were incubated for 48 hrs before evaluation. The plates were evaluated for a dose dependent increase in the number of revertants. Each trial consisted of triplicate plates of concurrent positive and negative controls and five doses of malachite green chloride. The high dose was limited by toxicity. Malachite green failed to induce mutation in Salmonella typhimurium strains TA97, TA98, TA100, TA102, TA104, or TA1535 with or without S9 metabolic activation and hence is not likely to be mutagenic in vitro.

In another study performed by Au and Hsu (1979), Gene mutation toxicity study was performed to evaluate the mutagenic nature of Malachite green (RA CAS no 569 -64 -2). The chemical was applied at dosage level of 20 μM for 5 hrs to Chinese hamster ovary cells maintained in McCoy 5a medium.Colcemid (0.04 p g / d final concentration) was added to each culture during the last hour of incubation and all cultures were harvested for conventional cytogenetic preparations, stained with Giemsa, and coded. 50 well-spread metaphases were scored for chromosome aberration. The average number of breaks per metaphase was calculated and was used for comparing the clastogenic activities. Malachite green failed to induce chromosomal aberrations in cultured Chinese hamster ovary (CHO) cells incubated for 5 hours at a dose of 20 μM and hence is not likely be mutagenic in vitro.

Salmonella/ mammalian microsome mutagenicity assay was also performed by Bonin et al (1981) to study the mutagenic potential of Patent Blue V (RA CAS 129 -17 -9) both in the presence and absence of metabolic activator S9 mix. To each 2 ml of top agar at 42°C was added 100 µL bacterial broth culture, 100 µL test compound dissolved in DMSO various concentrations, and 500 µL S9 mix as required. Plates were incubated at 37°C for 72 hrs before counting his+revertant colonies and each dose point was determined from at least two plates, unless indicated otherwise. Criteria for mutagenicity were (a) a dose-response and, (b) reproducibility of the result. Dose-responses were not always evident at concentratrations selected for initial testing. Since no mutagenicity was detected, Patent Blue V is negative for the induction of gene toxicity in vitro and hence is not likely to classify for gene mutation in vitro.

In another Salmonella/Mammalian-Microsome Mutagenicity Assay, the study performed by Seifried et al (2006) to determine the mutagenic nature of C.I. Basic Violet 4 (RA CAS no 2390 -59 -2). The study was performed at dose levels of 0.3-100µg/plate using Salmonella typhimurium TA98, TA100, TA1535, TA1537, and TA1538 with and without of metabolic activation system. Concurrent solvent and positive controls were used in the study. C.I. Basic Violet 4 failed to induce mutation in the Salmonella typhimurium TA98, TA100, TA1535, TA1537, and TA1538 with and without of metabolic activation system and hence is not likely to classify as a gene mutant in vitro.

Based on the weight od evidence data summarized, 4-(Diethylamino)-alpha,alpha-bis(4-(diethylamino)phenyl)benzenemethanol is not likely to classify as a gene mutant in vitro.

Justification for classification or non-classification

Based on the weight of evidence data summarized, 4-(Diethylamino)-alpha,alpha-bis(4-(diethylamino)phenyl)benzenemethanol is not likely to classify as a gene mutant in vitro.