Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 200-846-2 | CAS number: 75-18-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Mode of degradation in actual use
Administrative data
- Endpoint:
- mode of degradation in actual use
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Study period:
- Up to 1985
- Reliability:
- 4 (not assignable)
- Rationale for reliability incl. deficiencies:
- other: Results not relevant
Data source
Reference
- Reference Type:
- other: Journal article
- Title:
- Anaerobic biological decomposition of malodorous compounds in kraft pulping wastewater.
- Author:
- ENDO, G. and TOHYA, Y.
- Year:
- 1 985
- Bibliographic source:
- Wat. Sci. Technol., 17, 39-52.
Materials and methods
- Principles of method if other than guideline:
- In this investigation, the capability and performance of anaerobic biological decomposition of malodorous compounds (dimethyl sulfide, dimethyl disulfide, methyl mercaptan, H2S) in kraft pulping waste stream drains were studied.
- GLP compliance:
- no
- Type of study / information:
- no data reported
Test material
- Reference substance name:
- Dimethyl sulphide
- EC Number:
- 200-846-2
- EC Name:
- Dimethyl sulphide
- Cas Number:
- 75-18-3
- Molecular formula:
- C2H6S
- IUPAC Name:
- (methylsulfanyl)methane
- Details on test material:
- no data reported
Constituent 1
Results and discussion
Any other information on results incl. tables
The results obtained showed that the sulphur containing malodorous compounds can be removed by anaerobic digestion system, combined with an alkaline scrubbing process of digester gas. It was shown that DMS could not be decomposed by thermophilic anaerobic fermentation.
Applicant's summary and conclusion
- Conclusions:
- DMS could not be removed biologically from kraft pulping wastewater by an anaerobic digester sludge.
- Executive summary:
Endo (1985) is a non-GLP-compliant, non-guideline study following scientific principles, investigating the capability and performance of anaerobic biological decomposition of malodorous compounds in kraft pulping drains. The results of the study are not considered relevant so the study has only been used as a supporting study.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.