Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 696-364-9 | CAS number: 133779-11-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
Alkyl-1,3-diaminopropanes are poorly soluble in water and also have a strong tendency to adsorb to negatively charged surfaces such as suspended matter and test vessels or organic material (including dissolved organic matter such as humic acids). Many cationic substances in general but long chain alkyl polyamines in particular rank among the most difficult substances to test in environmental toxicology. Standard guideline studies are inappropriate to test substances with such properties and the current REACH Guidance Documents do not provide sufficient guidance concerning bioavailability and exposure assessment for cationic surface-active substances like the alkyl-1,3-diaminopropanes as these were written with normal hydrophobic chemicals in mind, failing to take into account the lack of bioavailability that occurs in the environment with these substances.
The long-term aquatic ecotoxicity tests with alkyl-1,3-diaminopropanes were therefore performed in river water to allow a PECaquatic,bulk/PNECaquatic,bulkapproach and is considered to be conservative but more environmentally realistic than the standard method. This approach is based on PEC estimations representing ‘total aquatic concentrations’. To characterize the risk to the aquatic compartment the PECaquatic,bulkis compared with the PNECaquatic,bulkderived from river water ecotoxicity studies (ECETOC, 2001).
In order to class standard laboratory toxicity study valid, it is of particular importance that - besides information on test substance, test method / conditions and test organism used - suitable precautions are taken to prevent the loss of test substance by adsorption and that exposure concentrations are based upon measured levels.
For ecotoxicity tests performed using the bulk approach, however, adsorption to suspended matter and DOC is acceptable and only adsorption to glassware should be accounted for. For a valid bulk approach test, the concentration-effect relationship should be based on the sum of adsorbed and dissolved substance in the volume of the medium tested. One of the advantages of the bulk approach tests with these difficult substances is that in the presence of suspended matter, humic acids and/or algae, the residual sorption to glassware will be negligible. The results of these bulk approach tests are therefore much easier to interpret, more environmental realistic, and if compared to PECbulkclearly provide a more appropriate assessment of risks for the environment. All effect values given are therefore based on the nominal test item concentrations.
Data of other diamines have been used as weight of evidence in the evaluation of the aquatic toxicity. All alkyl-1,3 -diamines under consideration consist of carbon, hydrogen and nitrogen only. The basic structure includes a hydrocarbon chain with a 1,3 -propanediamine group at the end of the chain. The main difference consists of differing chain lengths (C12 -18)and slight variations in the degree of saturation in the alkyl chain. The available ecotox data reveal a comparable toxicity independent of the alkyl chain length. Therefore a read-across approach is considered justified.
It should be noted that the fish studies are the only studies performed with reconstituted lab water, while the studies with Daphnia and algae were performed with river water. Studies performed in river water show in general a factor of 5 lower toxicity due to the mitigation by river water constituents. Daphnia and algae are more sensitive than fish even if the results of river water tests for Daphnia and algae are compared with test results in reconstituted lab water for fish. It was decided not to repeat the fish study in natural river water for ethical reasons. The use of an assessment factor of 10 is therefore more difficult to justify but a factor of 5 or higher difference in toxicity is considered to be sufficient to support the use of an assessment factor of 10 instead of 50 in the derivation of the PNECaquatic.
The difference in sensitivity between fish and daphnia/algae is supported by results from comparable substances like primary alkyl amines and quats.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.