Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 6-Methoxy-2-naphthaldehyde (3453-33-6). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 6-Methoxy-2-naphthaldehyde (3453-33-6) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.3 and the supporting QMRF report has been attached.
Qualifier:
according to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.3, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of test material: 6-Methoxy-2-naphthaldehyde
- Molecular formula: C12H10O2
- Molecular weight: 186.209 g/mol
- Smiles notation: COc1ccc2cc(ccc2c1)C=O
- InChl: 1S/C12H10O2/c1-14-12-5-4-10-6-9(8-13)2-3-11(10)7-12/h2-8H,1H3
- Substance type: Organic
- Physical state: Solid
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable.
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
not specified
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation.
Test concentrations with justification for top dose:
Not specified.
Vehicle / solvent:
Not specified.
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Details on test system and experimental conditions:
Not specified.
Rationale for test conditions:
Not specified.
Evaluation criteria:
Prediction was done considering a dose dependent increase in the number of revertants/plate.
Statistics:
Not specified.
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Remarks on result:
other: No mutagenic effect were observed.

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 7 nearest neighbours
Domain  logical expression:Result: In Domain

((((((((((("a" or "b" or "c" or "d" or "e" )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and ("j" and ( not "k") )  )  and "l" )  and ("m" and ( not "n") )  )  and ("o" and ( not "p") )  )  and "q" )  and "r" )  and "s" )  and ("t" and "u" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Aldehydes (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Aldehyde OR Aryl OR Ether OR Fused carbocyclic aromatic OR Naphtalene by Organic Functional groups ONLY

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Aldehyde OR Ether OR Fused carbocyclic aromatic OR Naphtalene OR Overlapping groups by Organic Functional groups (nested) ONLY

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Aldehyde, aromatic attach [-CHO] OR Aliphatic Carbon [CH] OR Aliphatic Carbon [-CH2-] OR Aliphatic Carbon [-CH3] OR Aromatic Carbon [C] OR Carbonyl, olefinic attach [-C(=O)-] OR Miscellaneous sulfide (=S) or oxide (=O) OR Olefinic carbon [=CH- or =C<] OR Oxygen, one aromatic attach [-O-] by Organic functional groups (US EPA) ONLY

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as Aldehyde OR Alkylarylether OR Aromatic compound OR Carbonyl compound OR Ether by Organic functional groups, Norbert Haider (checkmol) ONLY

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Formamides OR Michael addition OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Furans OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Methylenedioxyphenyl OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated aldehydes OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated ketones OR Michael addition >> Quinones and Quinone-type Chemicals OR Michael addition >> Quinones and Quinone-type Chemicals >> Quinones OR Schiff base formers OR Schiff base formers >> Direct Acting Schiff Base Formers OR Schiff base formers >> Direct Acting Schiff Base Formers >> Alpha-beta-dicarbonyl OR Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehydes OR SN1 OR SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >> Allyl benzenes OR SN1 >> Carbenium Ion Formation >> Hydrazine OR SN1 >> Carbenium Ion Formation >> N-Nitroso (alkylation) OR SN1 >> Carbenium Ion Formation >> Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-SN1 OR SN1 >> Carbenium Ion Formation >> Triazenes OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic nitro OR SN1 >> Nitrosation-SN1 OR SN1 >> Nitrosation-SN1 >> N-Nitroso-SN1 OR SN2 OR SN2 >> Direct Acting Epoxides and related OR SN2 >> Direct Acting Epoxides and related >> Aziridines OR SN2 >> Direct Acting Epoxides and related >> Epoxides OR SN2 >> Direct Acting Epoxides and related >> Sulfuranes OR SN2 >> Nitrosation-SN2 OR SN2 >> Nitrosation-SN2 >> Nitroso-SN2 OR SN2 >> SN2 at a Nitrogen atom OR SN2 >> SN2 at a Nitrogen atom >> N-acyloxy-N-alkoxyamides by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Quinones OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds OR AN2 >> Nucleophilic addition to alpha, beta-unsaturated carbonyl compounds >> alpha, beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> alpha, beta-Unsaturated Aldehydes OR AN2 >> Schiff base formation >> Polarized Haloalkene Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Haloalkenes with Electron-Withdrawing Groups OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Polarized Haloalkene Derivatives OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Quinones OR Radical OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Acyclic Triazenes OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium ion formation OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Geminal Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Haloalkenes with Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at sp3 and activated sp2 carbon atom OR SN2 >> SN2 at sp3 and activated sp2 carbon atom >> Polarized Haloalkene Derivatives by DNA binding by OASIS v.1.3

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as No alert found by Protein binding by OASIS v1.3

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Ester aminolysis OR Acylation >> Ester aminolysis >> Dithiocarbamates OR Acylation >> Ester aminolysis or thiolysis OR Acylation >> Ester aminolysis or thiolysis >> Activated aryl esters  OR Michael Addition OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> alpha,beta-Carbonyl compounds with polarized double bonds  OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> Conjugated systems with electron withdrawing groups  OR Michael Addition >> Michael addition on conjugated systems with electron withdrawing group >> Cyanoalkenes OR Michael Addition >> Polarised Alkenes OR Michael Addition >> Polarised Alkenes >> Polarised Alkene - alkenyl pyridines, pyrazines, pyrimidines or triazines  OR Michael Addition >> Quinoide type compounds OR Michael Addition >> Quinoide type compounds >> Quinone methide(s)/imines; Quinoide oxime structure; Nitroquinones, Naphthoquinone(s)/imines  OR Nucleophilic addition OR Nucleophilic addition >> Addition to carbon-hetero double bonds OR Nucleophilic addition >> Addition to carbon-hetero double bonds >> Ketones OR Schiff base formation OR Schiff base formation >> Direct acting Schiff base formers OR Schiff base formation >> Direct acting Schiff base formers >> Di-substituted alpha,beta-unsaturated aldehydes  OR Schiff base formation >> Schiff base formation with carbonyl compounds OR Schiff base formation >> Schiff base formation with carbonyl compounds >> Aldehydes OR SN1 OR SN1 >> Nucleophilic substitution (SN1) on alkyl (aryl) mercury cations OR SN1 >> Nucleophilic substitution (SN1) on alkyl (aryl) mercury cations >> Mercury compounds  by Protein binding by OASIS v1.3

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Non-Metals by Groups of elements

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Alkali Earth OR Alkaline Earth OR Halogens OR Metalloids OR Metals OR Rare Earth OR Transition Metals by Groups of elements

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Group 14 - Carbon C AND Group 16 - Oxygen O by Chemical elements

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Group 15 - Nitrogen N OR Group 16 - Selennm Se OR Group 16 - Sulfur S by Chemical elements

Domain logical expression index: "q"

Referential boundary: The target chemical should be classified as Aldehyde AND Aryl AND Ether AND Fused carbocyclic aromatic AND Naphtalene by Organic Functional groups ONLY

Domain logical expression index: "r"

Referential boundary: The target chemical should be classified as Aldehyde, aromatic attach [-CHO] AND Aliphatic Carbon [CH] AND Aliphatic Carbon [-CH2-] AND Aliphatic Carbon [-CH3] AND Aromatic Carbon [C] AND Carbonyl, olefinic attach [-C(=O)-] AND Miscellaneous sulfide (=S) or oxide (=O) AND Olefinic carbon [=CH- or =C<] AND Oxygen, one aromatic attach [-O-] by Organic functional groups (US EPA) ONLY

Domain logical expression index: "s"

Similarity boundary:Target: COc1ccc2cc(C=O)ccc2c1
Threshold=20%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "t"

Parametric boundary:The target chemical should have a value of log Kow which is >= 2.07

Domain logical expression index: "u"

Parametric boundary:The target chemical should have a value of log Kow which is <= 4.15

Conclusions:
6-Methoxy-2-naphthaldehyde ( 3453-33-6) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 6-Methoxy-2-naphthaldehyde (3453-33-6). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 6-Methoxy-2-naphthaldehyde (3453-33-6) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

 

  Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Prediction model based estimation and data from read across chemical have been reviewed to determine the mutagenic nature of 6-Methoxy-2-naphthaldehyde (3453-33-6). The studies are as mentioned below

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 6-Methoxy-2-naphthaldehyde (3453-33-6). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 6-Methoxy-2-naphthaldehyde (3453-33-6) was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Gene mutation toxicity was predicted for 6-Methoxy-2-naphthaldehyde (3453-33-6) using the battery approach from Danish QSAR database (2017). The study assumed the use of Salmonella typhimurium bacteria in the Ames test. The end point for gene mutation has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain.

Gene mutation toxicity study as predicted by 6-Methoxy-2-naphthaldehyde is negative and hence the chemical is predicted to not classify as a gene mutant in vitro.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by National Institute of Technology and Evaluation (Japan chemicals collaborative knowledge database , 2017)to determine the mutagenic nature of 4-Methoxybenzaldehyde(123-11-5). The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Genetic toxicity in vitro study for p-Anisaldehyde was assessed for its possible mutagenic potential. For this purpose AMES test was performed according to Guidelines for Screening Mutagenicity Testing of Chemicals(Chemical Substances Control Law of Japan) and OECD Test Guideline 471 .The test material was exposed to Salmonella typhimurium TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvr A at different concentration in the presence and absence of metabolic activation. No mutagenic effects were observed. Hence p-Anisaldehyde was considered to be non mutagenic in Salmonella typhimurium TA100, TA1535, TA98, TA1537 and Escherichia coli WP2 uvrA by AMES test .Hence the test substance cannot be classified as gene mutant in vitro.

In a study for structurally and functionally similar read across chemical, Gene mutation toxicity study was performed by U. S. National Library of Medicine (CCRIS ;, 2017) to determine the mutagenic nature of Vanillin (121-33-5) . The read across substances share high similarity in structure and log kow .Therefore, it is acceptable to derive information on mutation from the analogue substance. Genetic toxicity in vitro study for Vanillin (121-33-5) was observed for its mutagenic potential. The test material was exposed to Salmonella typhimurium TA 98, TA 100 and TA 1535 in the presence of S9. No mutagenic effect was observed .Therefore Vanillin was considered to be non mutagenic in Salmonella typhimurium TA 98, TA 100 and TA 1535 by Ames test. Hence the test substance cannot be classified as non mutagenic in vitro.

 

Based on the data available for the target chemical and its read across substance and applying weight of evidence 6-Methoxy-2-naphthaldehyde (3453-33-6) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.

Justification for classification or non-classification

Thus based on the above annotation for the target chemical . 6-Methoxy-2-naphthaldehyde (3453-33-6) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.