Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 213-030-6 | CAS number: 917-61-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicological Summary
- Administrative data
- Workers - Hazard via inhalation route
- Workers - Hazard via dermal route
- Workers - Hazard for the eyes
- Additional information - workers
- General Population - Hazard via inhalation route
- General Population - Hazard via dermal route
- General Population - Hazard via oral route
- General Population - Hazard for the eyes
- Additional information - General Population
Administrative data
Workers - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 25 mg/m³
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- Oral
DNEL related information
- DNEL derivation method:
- ECHA REACH Guidance
- Overall assessment factor (AF):
- 5
- Dose descriptor starting point:
- NOAEL
- Value:
- 50 mg/kg bw/day
- Modified dose descriptor starting point:
- NOAEC
- Value:
- 125 mg/m³
- Explanation for the modification of the dose descriptor starting point:
- There are no relevant experimental data on repeated exposure by inhalation. A conservative approach is used assuming a two times higher absorption via the inhalation route (end route) as compared to the oral route (starting route).
In a first step the oral NOAEL was transferred to humans with a factor of 1.4 for allometric scaling from dogs. For worker a NOEC long-term, inhalation was calculated assuming 70 kg per person, 8h light activity (10 m³ breathing volume), 50 % absorption via oral routes and 100 % absorption via inhalatory routes.
In a first step the oral NOAEL was transferred to humans with a factor of 1.4 for allometric scaling from dogs. For worker a NOEC long-term, inhalation was calculated assuming 70 kg per person, 8h light activity (10 m³ breathing volume), 50 % absorption via oral routes and 100 % absorption via inhalatory routes.
NOEC (Worker)inhalation = 50 mg/kg bw/day * 1/1.4 *70 kg * 1/10 m³ * 50%Abs, (oral) / 100 % Abs, (inhal) =125 mg/m³
NOEC (Worker)inhalation = 50 mg/kg bw/day * 1/1.4 *70 kg * 1/10 m³ * 50%Abs, (oral) / 100 % Abs, (inhal) =125 mg/m³
- AF for dose response relationship:
- 1
- Justification:
- The dose response relationship is considered unremarkable, therefore no additional factor is used.
- AF for differences in duration of exposure:
- 1
- Justification:
- No time extrapolation factor is needed since a chronic toxicity study is available.
- AF for interspecies differences (allometric scaling):
- 1
- Justification:
- No allometric scaling factor is applied because an oral-to-inhalation route extrapolation is performed
- AF for other interspecies differences:
- 1
- Justification:
- There is no evidence for species differences in the general mode of action or kinetics.
- AF for intraspecies differences:
- 5
- Justification:
- The default value for the relatively homogenous group "worker" is used.
- AF for the quality of the whole database:
- 1
- Justification:
- The quality of the whole data base is considered to be sufficient and uncritical.
- AF for remaining uncertainties:
- 1
- Justification:
- The approach used for DNEL derivation is conservative. No further assessment factors are required.
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Workers - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- DNEL (Derived No Effect Level)
- Value:
- 28.57 mg/kg bw/day
- Most sensitive endpoint:
- repeated dose toxicity
- Route of original study:
- Oral
DNEL related information
- DNEL derivation method:
- ECHA REACH Guidance
- Overall assessment factor (AF):
- 7
- Dose descriptor starting point:
- NOAEL
- Value:
- 50 mg/kg bw/day
- Modified dose descriptor starting point:
- NOAEL
- Value:
- 200 mg/kg bw/day
- Explanation for the modification of the dose descriptor starting point:
- There are no relevant experimental data on repeated dermal exposure. Based on the physical chemical properties of the substance (inorganic ionic substance, with high water solubility) a dermal absorption rate of 25 % through skin was deduced.
- AF for dose response relationship:
- 1
- Justification:
- The dose response relationship is considered unremarkable, therefore no additional factor is used.
- AF for differences in duration of exposure:
- 1
- Justification:
- No time extrapolation factor is needed since a chronic toxicity study is available.
- AF for interspecies differences (allometric scaling):
- 1.4
- Justification:
- The default allometric scaling factor for the differences between dogs and humans is used.
- AF for other interspecies differences:
- 1
- Justification:
- There is no evidence for species differences in the general mode of action or kinetics.
- AF for intraspecies differences:
- 5
- Justification:
- The default value for the relatively homogenous group "worker" is used.
- AF for the quality of the whole database:
- 1
- Justification:
- The quality of the whole data base is considered to be sufficient and uncritical.
- AF for remaining uncertainties:
- 1
- Justification:
- The approach used for DNEL derivation is conservative. No further assessment factors are required.
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
Workers - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- no hazard identified
Additional information - workers
General
DNEL derivation for the substance sodium cyanate is performed under consideration of the recommendations of ECHA. In view of the data used for evaluation, the "quality of whole database factors" and "dose-response factors" are considered to amount each to a value of 1, and are thus not shown in the calculations presented below.
Workers – Hazard via inhalation route
Long term systemic inhalation DNEL, worker
Calculation of dose descriptor
Step 1: Selection of the relevant dose descriptor (starting point):
For risk characterisation a inhalation NOAEC was derived by route to route extrapolation.
The oral NOAEL of 50 mg/kg bw/day, obtained from chronic repeated dose toxicity testing in dogs by Cerami, A (1973), was considered as key value for the chemical safety assessment and therefore, most relevant starting point.
Step 2: Modification into a correct starting point:
In a first step the oral NOAEL was transferred to humans with a factor of 1.4 for allometric scaling from dogs. For worker a NOEC long-term, inhalation was calculated assuming 70 kg per person, 8h light activity (10 m³ breathing volume), 50 % absorption via oral routes and 100 % absorption via inhalatory routes.
NOEC (Worker)inhalation = 50 mg/kg bw/day * 1/1.4 *70 kg * 1/10 m³ * 50%Abs, (oral) / 100 % Abs, (inhal) =125 mg/m³
Step 3: Use of assessment factors: 5
Interspecies: no allometric scaling factor is applied because an oral-to-inhalation route extrapolation is performed.
Interspecies AF, remaining differences: 1
Intraspecies AF (worker): 5
In conclusion the long term systemic inhalation DNEL workers was calculated to be 25 mg/m³ bw/day.
Short term acute inhalation DNEL, worker
The test material is not classified and labelled for acute dermal toxicity, according to Regulation (EC) No 1272/2008 (CLP). Thus, in accordance with “Guidance on information requirements and chemical safety assessment chapter R8: Characterisation of dose (concentration)- response for human health” no DNEL is required.
Local effects
No data on respiratory irritation is available. As the substance is not classified as skin and eye irritating also no adverse effects on respiratory system is expected. Based on the physical parameters a peak exposure is not expected. The substance is solid with an expected very low vapour pressure. In addition no particles below 10 µm were found in the granolometry test. Thus, no DNEL is required.
Workers – Hazard via dermal route
Long term systemic dermal DNEL, worker
Calculation of dose descriptor
Step 1: Selection of the relevant dose descriptor (starting point):
For risk characterisation a dermal NOAEL was derived by route to route extrapolation.
The oral NOAEL of 50 mg/kg bw/day, obtained from chronic repeated dose oral toxicity testing in dogs by Cerami, A (1973), was considered as key value for the chemical safety assessment and therefore, most relevant starting point.
Step 2: Modification into a correct starting point:
Based on the physical chemical properties of the substance (inorganic ionic substance, with high water solubility) a dermal absorption rate of 25 % through skin was deduced.
In conclusion, dermal NOAEL = oral NOAEL x [ABS oral dog /ABS dermal human] = 50 mg/kg bw/day x (100/25) = 200 mg/kg bw/d.
Step 3: Use of assessment factors: 7
Interspecies AF, allometric scaling (dog to human): 1.4
Interspecies AF, remaining differences: 1
Intraspecies AF (worker): 5
Exposure duration AF (chronic exposure period): 1
In conclusion the long term systemic dermal DNEL workers were calculated to be 28.57 mg/kg bw/day.
Acute short term dermal DNEL, worker
The test material is not classified and labelled for acute dermal toxicity, according to Directive 67/548/EEC (DSD) and Regulation (EC) No 1272/2008 (CLP). Thus, in accordance with “Guidance on information requirements and chemical safety assessment chapter R8: Characterisation of dose (concentration)- response for human health” no DNEL is required.
Local effects
Worker local DNEL for dermal route does not need to be derived as no dermal and eye irritation and no skin sensitisation (leading to C&L) has been identified (in accordance with "Guidance on information requirements and chemical safety assessment, chapter R8: Characterisation of dose (concentration)- response for human health").
Worker – Hazard for the eyes
According to the EU (GHS) criteria for classification and labelling requirements for dangerous substances and preparations the test item does not have to be classified and has no obligatory labelling requirement for eye irritation.
References
(not included as endpoint study record)
- ECHA (2010). Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health. Version 2. ECHA-2010 -G-19 –EN.
- ECHA (2010). Guidance on information requirements and chemical safety assessment.Chapter R.7.12: Endpoint specific guidance: Guidance on Toxicokinetics. May 2008
- ECHA (2012) Practical Guide 15: How to undertake a qualitative human health assessment and document it in a chemical safety report, November 2012.
General Population - Hazard via inhalation route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
General Population - Hazard via dermal route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
Local effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
General Population - Hazard via oral route
Systemic effects
Long term exposure
- Hazard assessment conclusion:
- no hazard identified
Acute/short term exposure
- Hazard assessment conclusion:
- no hazard identified
DNEL related information
General Population - Hazard for the eyes
Local effects
- Hazard assessment conclusion:
- no hazard identified
Additional information - General Population
No exposure is intended for the general population. Thus, no DNELS were derived.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.