Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
basic toxicokinetics in vivo
Type of information:
read-across from supporting substance (structural analogue or surrogate)
Adequacy of study:
weight of evidence
Study period:
From January 06, 2004 to November 17, 2005
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
- Study was conducted according to the OECD 417 and in compliance with GLP with some acceptable deviations. However, the dermal application part suffered from design limitations, allowing for oral uptake from the skin after the 6h exposure, and therefore invalidating the results obtained for dermal uptake.
Justification for type of information:
Refer to section 13 of IUCLID for details on the read-across justification. The study with the read across substance is considered sufficient to fulfil the information requirements as further explained in the provided endpoint summary.
Objective of study:
toxicokinetics
Qualifier:
according to guideline
Guideline:
OECD Guideline 417 (Toxicokinetics)
Deviations:
yes
Remarks:
see 'Principles of method if other than guideline'
GLP compliance:
yes (incl. QA statement)
Radiolabelling:
yes
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals or test system and environmental conditions:
-Species: Sprague-Dawley rats
-Strain: Crl CD® (SD) IGS BR
-Source: Charles River Laboratories France, L’Arbresle, France. Caesarean Obtained, Barrier Sustained-Virus Antibody Free (COBS-VAF®).
-Sex: 60 males and 60 females.
-Age/weight at study initiation: Young adults approximately 7 week old; for the bile collection group, animals were around 10 week old.
-Number of animals per group: Kinetics (5 groups): 9 males and 9 females (3/group/time/sex); Excretion balance: (3 groups): 5 males and 5 females
Bile collection (1 group): 4 males and 4 females
-Control animals: Yes: For the purposes of pre-dose sample analysis, plasma, blood and tissues will be collected from at least one untreated supplementary animal/sex using the above mentioned procedures.

Route of administration:
other: Gavage and topical
Vehicle:
water
Details on exposure:
-Specific activity of test substance 2.15 MBq/mg test item (58.2 µCi/mg)
-Volume applied: Oral: 10 mL/kg; Dermal: 1.5 mL/kg bw on approximately 10% body surface area (approximately 12 µL/cm2)
-Size of test site: Dermal: approximately 10% body surface area: 25 cm2 for 200 g rat, 30 cm2 for 250 g rat.
-Exposure period: Dermal: Treated area washed after 6 h.
-Sampling time: PK - oral: (3 animals/sex/group) post-gavage
⋅ first sampling set: 0.5, 4 and 24 h,
⋅ second sampling: 1, 8 and 48 h,
⋅ third sampling set: 2, 72 and 96 h.
PK - dermal (after initiation of skin contact):
⋅ first sampling set: 3, 8 and 24 h,
⋅ second sampling: 6, 10 and 48 h,
⋅ third sampling set: 7, 16 and 72 h.
MB oral and dermal:
Urine and faeces: 24 h before radioactive treatment, and during the periods 0-24, 24-48, 48-72, 72-96, 96-120, 120-144 and 144-168 h after the radioactive gavage/dermal application.
Bile collection: 0-3, 3-6, 6-12 and 12-24 h post gavage.

-Samples: Blood/plasma, urine, faeces, bile, exhaled air, organs, carcass, skin with substance not removable, liquid used for washing the skin, protective appliances.
Duration and frequency of treatment / exposure:
6 h
Dose / conc.:
50 mg/kg bw/day (nominal)
Remarks:
Doses / Concentrations:
Males and females: Single and repeated oral low dose level: 50 mg/kg bw; high dose oral: 200 mg/kg bw; single dermal low dose: 1.5 mg/kg bw; igh dose dermal: 15 mg/kg bw.
No. of animals per sex per dose / concentration:
Males: 64
Females: 64

Details on dosing and sampling:
See 'Any other information on materials and methods incl. tables'
Type:
other: Absorption, distribution and excretion
Results:
Dermal and gastro-intestinal absorption of test substance is limited (due to ionic structure and adherence potential to negative charged surfaces), and excretion is rapid, mostly via the faeces and only a small amount via urine.
Details on absorption:
-Percutaneous absorption:
Dose:
Radiochemical purity (99.5%) is sufficient (>98% ; OECD guidance), and formulated material was relevant in relation to possible human exposure: Concentrations for dermal application were 0.1 and 1% for 6h. This is based on already available information on irritancy levels of the test substance: 4h, 5% on rabbit skin is mildly irritating; 24h occluded patches with 0.1% concentrations in water produced a well defined erythema and very slight oedema. The oral high dose of 200 mg a.i./kg bw could possibly lead to some toxic effects, as the acute LD50 by gavage is between 250 and 450 mg a.i./kg bw.
Recovery:
Total recovery for oral groups were sufficient with around 100% except for males of repeated dose group resulting to 95.3% recovery.
For dermal groups, total recovery was slightly low (87.2% males and 91.0% females). However, it should be remarked that probably the total radioactivity in the carcass samples with an average of about 5% was too low, as for all 4 animals for which no separate internal organs were measured, total carcass levels were about 10%, compared to 1 to 3% for the 6 animals for which radioactivity in individual organs were measured.

Oral absorption:
Most of the radioactivity was excreted via the faeces. About 3-4% left via urine, except for the males in the repeated dose groups showing a mean value of 8.31%. However, soft faeces were also observed in this group during the days of collection, possibly causing contamination of urine with faeces.
Also corresponding with high cage wash values. Elimination was quick, with 70-80% excreted within the first 24h. No radioactivity was left in the carcass. Bile examinations show that 4.58% (males) and 3.75% (females) of the total dose was recovered in the bile. Elimination was quick, with 25-30% already passed out in the bile in the 0-3 h period. The mean plasma and blood levels for males and females remained below quantifiable limits at all time points, except in the 50 mg/kg dose group for 0.5 to 2h time points for plasma (161 and 251 ng -eq/g for males at 1 and 2h respectively, and 109 ng-eq/g at 0.5 h, 212 ng-eq/g at 1h and 192 ng-eq/g at 2 h for females), and in blood only the 1 h time point in females (173 ng-eq/g). No plasma or blood levels could be determined for the 200 mg/kg dose group or the repeated 50 mg/kg dose group.
Following single oral gavage at a nominal dose-level of 50 mg/kg bw to rats of group 1, the mean radioactivity levels were below quantifiable limits in all tissues/organs at all time-points, except for the intestines and liver. Specifically, levels for males/females were 23.3/23.2% of the dose for the intestines and 0.087/0.039% of the dose for the liver at the 24h time-point. Levels decreased over time, and were all non-quantifiable by 168h.
Following single oral gavage at a nominal dose level of 200 mg/kg bw to rats of group 2, the mean radioactivity levels were above quantifiable limits in approximately half the analysed tissues and organs at 24 h. Specifically, high levels were present in the intestines (62.2/71.5% of the dose) for males/females, and trace levels were present in the abdominal fat, heart, kidneys, liver, lungs, lymph nodes and or pancreas (range 0.004 to 0.24% of the dose). As previous, levels decreased over time, and were all non-quantifiable by 96h with the exception of the intestines.
Following repeated oral gavage at a nominal dose-level of 50 mg/kg bw to rats of group 5, the mean radioactivity levels were below quantifiable limits in all tissues/organs, except for the intestines (e.g. levels for males/females of 15.9/36.9% of the dose at 24h) and the liver in males (0.072% of the dose at 24 h). Levels decreased over time and were non-quantifiable by 168h.

Dermal absorption:
The minimal percutaneous absorption (Faeces, urine and intestines) seemed to amount to 46.4% for males, and 47.4% for females. The maximum systemic absorption (faeces, urine, carcass and skin site) was 50.0% and 50.1% for males and females respectively. The data indicate that the skin application site is a reservoir for absorbed radioactivity in the animals. As the dermal application site was not protected from grooming after the 6h exposure period, test substance remained available on the skin for subsequent oral uptake from grooming.
Test substance was uniformly distributed in the stratum corneum. Cross-contamination to adjacent skin was observed. The mean plasma and blood levels for males and females for 1.5 mg/kg dose group remained below quantifiable limits at all time points, except for the 7 and 8 h time-points for blood (levels for males/females of 3.52/4.40 and 2.67/3.26 ng-eq/g, respectively). For the 15 mg/kg bw dose group only the 8 (levels of 70.2/68.6 ng-eq/g for males/females) and 24 (levels of 62.3/55.0 ng-eq/g for males/females) h time-points resulted in values above the quantifiable limits.
Following single dermal application at a nominal dose-level of 1.5 mg/kg to rats of group 3 and 15 mg/kg to rats of group 4, the mean radioactivity levels were below quantifiable limits in all tissues/organs at all time-points except for the intestines, "stripped" skin from the application site and adjacent site. Trace levels were found at 24 and 48h time-points in the eyes of the 1.5 mg/kg bw dose group.

No test substance-related mortality or morbidity were observed during the study. The only death observed (Male D28768, group 9, single oral dose at 50 mg/kg bw), was an isolated incident and not seen at the higher dose-level of 200 mg/kg bw, was considered to be due to complications following the bile duct cannulation. In terms of clinical signs, ptyalism was
seen in 1/9 males and 1/9 females of group 5 from Day 6 (repeat oral dose of 50 mg/kg bw) and soft faeces were noted in 4/5 males of group 8 from Day 6 (also, repeat oral dose of 50 mg/kg bw). As the ptyalism was of low incidence and is often seen in rats treated orally, this was not considered to be test substance-related. In contrast, as of high incidence, the
soft faeces were considered to be due to the repeated test substance treatment. No dermal irritation occurred.


Recovery: Total recovery for oral groups were sufficient with around 100% except for males of repeated dose group resulting to 95.3% recovery. For dermal groups, total recovery was slightly low (87.2% males and 91.0% females). However, it should be remarked that probably the total radioactivity in the carcass samples with an avarage of about 5% was too low, as for all 4 animals for which no separate internal organs were measured, total carcass levels were about 10%, compared to 1 to 3% for
the 6 animals for wich radioactivity in individual organs were measured.

-Oral application: 
Following single and/or repeated oral gavage at 50 and 200 mg/kg bw/day, the plasma, blood and organ radioactivity levels were essentially non-quantifiable indicating a low oral bioavailability. The actual fraction of the oral dose absorbed was about 8% (urine and bile fractions); this was eliminated rapidly, essentially within a 48 to 72h period. The vast majority of the oral dose was excreted rapidly in the faeces. At the high oral dose-level only, quantifiable levels of radioactivity were found in some central organs at 8h post-dosing; otherwise, the vast majority of the dose was confined to the intestine and levels decreased over time. Only 0.62 to 8.15% of the oral
dose was eliminated in the bile in a 24h period.

-Dermal application:
Following single dermal application at 1.5 and 15 mg/kg bw, the plasma and blood radioactivity levels were non-quantifiable at nearly all time-points. For the 1.5 mg/kg bw group, around 2% and 43% of the dose was eliminated in the urine and faeces, respectively, mostly within a 48h period, suggesting that the dermal dose was highly absorbed via the skin. However, as the test site was not protected with an Elizabethan collar during the main part of the collection
period (the collar was worn during the 6h exposure period only), this may have been due to the animal licking the test site. This is also supported with the finding that after oral dosing only about 4% was excreted via bile back to intestines, and 4% excreted via urine. If similar routes of excretion are expected for dermal absorbed doses, it would
not be possible to find levels of 50% of applied doses in intestines with only 2% excreted via urine. This indicates that about 50% of the dermal applied dose was taken up orally after all, which following the same oral kinetics leads to the 2% excretion in urine as indeed was observed.

At 24 h post-dosing, most of the radioactivity was in the "stripped" skin (dermis/epidermis) application site (15.02/8.74% [male/female] and 33.8/24.2% of the dose for the high and low dose groups respectively) and intestine for both dose-levels (5.76/8.32% and 5.61/7.79% of the dose for the high and low dose groups respectively), though some radioactivity was in the skin adjacent to the application site and minor traces were in the eyes (both most likely from
cross-contamination due to grooming). At 168 h, levels in the application site of the individual animals of the low dose were 5.19 to 9.21% of the radioactive dose, suggesting the skin acted as a drug reservoir. In the stratum corneum of the application site, the levels of radioactivity were of similar magnitude in the different layers at each
time-point. For all tissues/organs, the radioactivity levels essentially decreased over time.

Conclusions:
Based on the results of the read-across study:
- Oral:
Following single and/or repeated oral administration at 50 and 200 mg/kg bw, the plasma, blood and organ radioactivity levels were essentially non-quantifiable indicating a low oral bioavailability. The actual fraction of the oral dose absorbed was about 8% (urine and bile fractions); this was eliminated rapidly, essentially within a 48 to 72h period. The vast majority of the oral dose was excreted rapidly in the faeces. At the high oral dose-level only, quantifiable levels of radioactivity (2,386 to 23,442 ng-eq/g) were found in some central organs at 8 h post-dosing; otherwise, the vast majority of the dose was confined to the intestines and levels decreased over time. Only about 4% of the oral dose was eliminated in the bile in a 24h period of which about 30% during the first 3h.
- Dermal:
Following single dermal application at 1.5 and 15 mg/kg bw, the plasma and blood radioactivity levels were non-quantifiable at nearly all time-points. For the 1.5 mg/kg bw group, around 2% and 43% of the dose was eliminated in the urine and faeces, respectively, mostly within a 48h period, suggesting that the dermal dose was highly absorbed via the skin. However, as the test site was not protected with an Elizabethan collar during the main part of the collection period (the collar was worn during the 6h exposure period only), this may have been due to the animal licking the test site. This is also supported with the finding that after oral dosing only about 4% was excreted via bile back to intestine, and 4% excreted via urine. If similar routes of excretion are expected for dermal absorbed doses, it would not be possible to find levels of 50% of applied doses in intestine with only 2% excreted via urine. This indicates that about 50% of the dermal applied dose was taken up orally after all, which following the same oral kinetics leads to the 2% excretion in urine as indeed was observed.

At 24h post-dosing, most of the radioactivity was in the "stripped" skin (dermis/epidermis) application site (15.02/8.74% [male/female] and 33.8/24.2% of the dose for the high and low dose groups respectively) and intestines for both dose-levels (5.76/8.32% and 5.61/7.79% of the dose for the high and low dose groups respectively), though some radioactivity was in the skin adjacent to the application site and minor traces were in the eyes (both most likely from cross-contamination due to grooming). At 168h, levels in the application site of the individual animals of the low dose were 5.19 to 9.21% of the radioactive dose, suggesting the skin acted as a drug reservoir. In the stratum corneum of the application site, the levels of radioactivity were of similar magnitude in the different layers at each time-point. For all tissues/organs, the radioactivity levels essentially decreased over time.
Executive summary:

A study was conducted to determine the basic toxicokinetics of the read-across substance, C12-16 ADBAC (active: 49.9%), according to OECD Guideline 417, in compliance with GLP. This toxicokinetic study was conducted using radiolabelled test substance. Rats were treated with single and repeated oral doses (50 or 200 mg/kg bw) as well as a single dermal dose of 1.5 or 15 mg/kg bw. Based on the results of the read-across study, following single and/or repeated oral doses, the plasma, blood and organ radioactivity levels were essentially non-quantifiable, indicating a low oral bioavailability. The actual fraction of the oral dose absorbed was around 8% (urine and bile fractions). This was eliminated rapidly, essentially within a 48 to 72 h period. The majority of the oral dose was excreted in the faeces. At the high oral dose level only, quantifiable levels of radioactivity (2,386 to 23,442 ηg equivalent/g) were found in some central organs at 8 h post-dosing; otherwise, the vast majority of the dose was confined to the intestines and levels decreased over time. Only about 4% of the oral dose was eliminated in the bile in a 24 h period, of which about 30% during the first 3 h. Following a single dermal application, the plasma and blood radioactivity levels were non-quantifiable at nearly all time-points. For the 1.5 mg/kg bw group, around 2 and 43% of the dose was eliminated in the urine and faeces, respectively, mostly within a 48 h period, suggesting that the dermal dose was highly absorbed via the skin. However, this apparent high absorption via the skin may have been due to the animal licking the test site. This is also supported with the finding that, after oral dosing, only about 4% was excreted via bile back to the intestine and 4% excreted via urine. If similar routes of excretion are expected for dermally absorbed doses, it would not be possible to find levels of 50% of applied doses in intestine with only 2% excreted via urine. This indicates that about 50% of the dermally applied dose was taken up orally after all. According to the same oral kinetics, this leads to the 2% excretion in urine as indeed was observed. At 24 h post-dosing, most of the radioactivity was in the “stripped” skin (dermis/epidermis) application site (15.02/8.74% [male/female] and 33.8/24.2% of the dose for the high and low dose groups respectively) and intestines for both dose levels (5.76/8.32% and 5.61/7.79% of the dose for the high and low dose groups respectively), though some radioactivity was in the skin adjacent to the application site and minor traces were in the eyes (both most likely from cross-contamination due to grooming). At 168 h, levels in the application site of the individual animals of the low dose were 5.19 to 9.21% of the radioactive dose, suggesting the skin acted as a drug reservoir. In the stratum corneum of the application site, the levels of radioactivity were of similar magnitude in the different layers at each time-point. For all tissues/organs, the radioactivity levels decreased over time (Appelqvist, 2006).

Description of key information

Based on the available weight of evidence experimental studies, the test substance, C18 ADBAC, is expected to be have a poor absorption potential through oral and dermal routes and primarily excreted via faeces. Based on QSAR predictions, it is likely to undergo aliphatic hydroxylation as the first metabolic reaction. Further, based on the MW and key physico-chemical properties it is likely to have low bioaccumulation potential.

Key value for chemical safety assessment

Bioaccumulation potential:
low bioaccumulation potential
Absorption rate - oral (%):
10
Absorption rate - dermal (%):
10
Absorption rate - inhalation (%):
100

Additional information

ABSORPTION:

Oral absorption

Based on physicochemical properties:

According to REACH guidance document R7.C (May 2014), oral absorption is maximal for substances with molecular weight (MW) below 500. Water-soluble substances will readily dissolve into the gastrointestinal fluids; however, absorption of hydrophilic substances via passive diffusion may be limited by the rate at which the substance partitions out of the gastrointestinal fluid. Further, absorption by passive diffusion is higher at moderate log Kow values (between -1 and 4). If signs of systemic toxicity are seen after oral administration (other than those indicative of discomfort or lack of palatability of the test substance), then absorption has occurred.

The test substance, C18 ADBAC is a mono-constituent substance, which is an alkyl benzyl dimethyl ammoniumchloride (ADBAC) type of cationic surfactant with C18 as major alkyl chains. Its MW is 424.15 g/mol. The purified form of the substance is a white solid, with low water solubility of 19-20.8 mg/L at 20°C (based on CMC) and a moderate log Kow of 3.89 (calculated based on solubility in octanol and water/CMC).

Based on the R7.C indicative criteria, and considering that the test substance is highly ionic therefore, it is expected not to be readily absorbed from the gastrointestinal tract.

Based on experimental data on read across substances:

A toxicokinetic study was conducted with the radiolabelled read across substance, C12-16 ADBAC, according to OECD Guideline 417, in compliance with GLP. Rats were treated with single and repeated oral doses (50 or 200 mg/kg bw) as well as a single dermal dose of 1.5 or 15 mg/kg bw. Following single and/or repeated oral doses, the plasma, blood and organ radioactivity levels were essentially non-quantifiable, indicating a low oral bioavailability. The actual fraction of the oral dose absorbed was about 8% (urine and bile fractions). This was eliminated rapidly, essentially within a 48 to 72 hour period. The majority of the oral dose was excreted in the faeces. At the high oral dose level only, quantifiable levels of radioactivity (2,386 to 23,442 ηg equivalent/g) were found in some central organs at 8 hour post-dosing; otherwise, the vast majority of the dose was confined to the intestines and levels decreased over time. Only about 4% of the oral dose was eliminated in the bile in a 24 hour period, of which 30% was eliminated during the first 3 hours (Appelqvist, 2006).

Conclusion:Overall, based on the available weight of evidence information, the test substance can be expected to overall have low absorption potential through the oral route. Therefore, as a conservative approach a value of 10% has been considered for the risk assessment.

Dermal absorption

Based on physicochemical properties:

According to REACH guidance document R7.C (ECHA, 2017), dermal absorption is maximal for substances having MW below 100 together with log Kow values ranging between 2 and 3 and water solubility in the range of 100-10,000 mg/L. Substances with MW above 500 are considered to be too large to penetrate skin. Further, dermal uptake is likely to be low for substances with log P values <0 or <-1, as they are not likely to be sufficiently lipophilic to cross thestratum corneum (SC). Similarly, substances with water solubility below 1 mg/L are also likely to have low dermal uptake, as the substances must be sufficiently soluble in water to partition from the SC into the epidermis.

The test substance is a white solid, with an MW exceeding 100 g/mol, low water solubility and a calculated log Kow greater than 3. This together with the fact that the test substance is highly ionic suggests that the test substance is likely to have a low penetration potential through the skin.

Based on experimental data on read across substance:

In theAppelqvist (2006) study,following single dermal application at 1.5 and 15 mg/kg bw, the plasma and blood radioactivity levels were non-quantifiable at nearly all time-points. For the 1.5 mg/kg bw group, around 2% and 43% of the dose was eliminated in the urine and faeces, respectively, mostly within a 48h period, suggesting that the dermal dose was highly absorbed via the skin. However, as the test site was not protected with an Elizabethan collar during the main part of the collection period (the collar was worn during the 6h exposure period only), this may have been due to the animal licking the test site. This is also supported with the finding that after oral dosing only about 4% was excreted via bile back to intestine, and 4% excreted via urine. If similar routes of excretion are expected for dermal absorbed doses, it would not be possible to find levels of 50% of applied doses in intestine with only 2% excreted via urine. This indicates that about 50% of the dermal applied dose was taken up orally after all, which following the same oral kinetics leads to the 2% excretion in urine as indeed was observed. At 24h post-dosing, most of the radioactivity was in the "stripped" skin (dermis/epidermis) application site (15.02/8.74% [male/female] and 33.8/24.2% of the dose for the high and low dose groups respectively) and intestines for both dose-levels (5.76/8.32% and 5.61/7.79% of the dose for the high and low dose groups respectively), though some radioactivity was in the skin adjacent to the application site and minor traces were in the eyes (both most likely from cross-contamination due to grooming). At 168 h, levels in the application site of the individual animals of the low dose were 5.19 to 9.21% of the radioactive dose, suggesting the skin acted as a drug reservoir. In the stratum corneum of the application site, the levels of radioactivity were of similar magnitude in the different layers at each time-point. For all tissues/organs, the radioactivity levels essentially decreased over time.

Based on QSAR prediction:

The two well-known parameters often used to characterise percutaneous penetration potential of substances are the dermal permeability coefficient (Kp[1]) and maximum flux (Jmax). Kp reflects the speed with which a chemical penetrates across SC and Jmax represents the rate of penetration at steady state of an amount of permeant after application over a given area of SC. Out of the two, although Kp is more widely used in percutaneous absorption studies as a measure of solute penetration into the skin. However, it is not a practical parameter because for a given solute, the value of Kp depends on the vehicle used to deliver the solute. Hence, Jmax i.e., the flux attained at the solubility of the solute in the vehicle is considered as the more useful parameter to assess dermal penetration potential as it is vehicle independent (Robert and Walters, 2007).

In the absence of experimental data, Jmax can be calculated by multiplying the estimated water solubility with the Kp values from DERMWIN v2.01 application of EPI Suite v4.11. The calculated Jmax for the main constituent was 2.22E-08 μg/cm2/h. As per Shenet al.2014, the default dermal absorption for substances with Jmax is ≤0.1 μg/cm2/h can be considered to be less than 10%. Based on this, the test substance can be predicted to have low absorption potential through the dermal route.

Conclusion: Overall, based on all the available weight of evidence information, the test substance can be expected to have a low absorption potential absorption through the dermal route. Therefore, as a conservative approach a default value of 10% has been considered for the risk assessment.

Inhalation absorption

Based on physicochemical properties:

According to REACH guidance document R7.C (ECHA, 2017), inhalation absorption is maximal for substances with VP >25 KPa, particle size (<100 μm), low water solubility and moderate log Kow values (between -1 and 4). Very hydrophilic substances may be retained within the mucus and not available for absorption.

Based on estimated vapour pressure values from different QSAR models (see section 1.3 of CSR) overall the test substance is considered to have low volatility potential under ambient conditions. Therefore, the substance is expected neither to be available for inhalation as vapours nor as aerosols. Further, if at all there is any inhalation exposure, considering the low water solubility of the substance, it is not expected to be retained in the mucus and almost the entire test substance amount is likely to reach the lower respiratory tract followed by absorption into the blood stream. The absorption fate of the deposited material thereafter is expected to be similar to the oral route/gastrointestinal tract.

Conclusion:Based on the above information, if exposed the test substance can be expected to have moderate to high absorption through the inhalation route. Therefore, as a conservative approach, a default value of 100% has been considered for the risk assessment.

METABOLISM:

Based on QSAR modelling:

The OECD Toolbox was used to predict the first metabolic reaction, since the rat liver S9 metabolism simulator performs predictions for salts, while SMARTCyp and MetaPrint2D are not powered enough for this type of substances. The second simulator of the OECD Toolbox (in vivo rat metabolism simulator) was not used as it does not consistently perform predictions for salts. As per the rat liver S9 metabolism simulator, all the major constituents (present at >5%) are primarily predicted to undergo ω or ω-1 aliphatic hydroxylation reactions. See table in CSR for the reaction sites. For further details, refer to the RA read across justification.

Similar reactive sites were predicted for structurally similar ADBACs.

BIOACCUMULATION:

Based on the MW and physicochemical information and metabolism prediction, the bioaccumulation potential of the substance is expected to be low.

EXCRETION:

Based on the evidence from the available toxicokinetic study (Appelqvist, 2006), the test substance is primarily expected in faeces (>90%) and less via urine (<10%).


[1]Log Kp = -2.80 + 0.66 log kow – 0.0056 MW