Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Link to relevant study record(s)

Description of key information

Key value for chemical safety assessment

Additional information

The pharmacokinetik properties of PFOS have been investigated in several not assignable (secondary literature) studies. Animal studies have shown that PFOS is well absorbed orally and by inhalation, but poorly eliminated; PFOS is not metabolized, and undergoes extensive uptake from enterohepatic circulation. The compound is distributed mainly to the serum, kidney, and liver. Rats accumulate PFOS in the liver, whereas in monkeys an accumulation of PFOS in the liver was not substantiated. Thus for hepatotoxicity the concentrations of PFOS in the liver are essential which may be different from serum levels in various species. From limited human data it can be concluded, the ratio of the concentrations of PFOS in liver and serum in humans and monkeys is similar.

The elimination half-lives of PFOS variates from 7.5 days in rats, to over 200 days in cynomolgus monkeys to 8.67 years in humans.

Read-across justification

- Group: The perfluorooctane sulfonate anion (PFOS) does not have a specific CAS number. The acid and salts have the following CAS numbers: acid (1763-23-1), ammonium (NH4 +) salt (29081-56-9), potassium (K+) salt (2795-39-3), tetraethylammonium (C2H5)4N+) salt (56773-42-3).

For the registration of tetraethylammonium perfluorooctanesulfonate (CAS 56773-42-3) the data on perfluorooctane sulfonate anion (PFOS) as well as the respective salts were taken into consideration and a read across approach was used due to the following reasons:

- Justification: REACH regulation EC 1907/2006 and ECHA guidance document R.6 state that substances whose physico-chemical, toxicological and ecotoxicological properties are likely to be similar, or follow a regular pattern as a result of structural similarity, may be considered as a group / category of substances. Properties of PFOS are mainly determined by the length of the fluorinated tail and not by the nature of the functional group. PFOS and its salts are dissociated in aqueous media, substituted amines and the corresponding sulfonyl fluorid are hydrolysed in aqueous media to PFOS. Therefore these compounds are members of a large family of perfluoroalkyl sulfonate substances. According to OECD, 2002, (ENV/JM/RD(2002)17/FINAL) “perfluorinated compounds represent a very unique chemistry”, at least substances with equal numbers of perfluorinated carbon atoms and functional groups.

Thus, in accordance with OECD, 2002, grouping and read-across based on the length of the perfluorinated carbon structure with a sulfonate moiety is in principle possible. The criterion of structural similarity is fulfilled and all substances may be regarded as group with respect to chemical behaviour. This judgement is in line with and confirmed by the existing classification of perfluoroalkyl sulfonates in Europe: according Annex VI to Regulation (EC) No 1272/2008 for classification and labeling several perfluoroalkyl sulfonates are considered as a group/category and therefore identical hazard class/category codes, and hazard statement codes applies. The following substances/CAS number are mentioned explicitly in the regulation: perfluorooctane sulfonic acid/1763-23-1, potassium perfluorooctanesulfonate/ 2795-39-3, diethanolamine perfluorooctane sulfonate/70225-14-8, ammonium perfluorooctane sulfonate/29081-56-9, lithium perfluoroocane sulfonate/29457-72-5.

This approach also apply to tetraethylammonium perfluorooctanesulfonate, as the evaluation of the toxicological data of tetraethylammonium perfluorooctanesulfonate substantiate the membership of the substance to the group and the same hazard class and statement codes are valid.

Therefore based on the available data as well as on earlier judgements by e.g. OECD and within the EU classification a read across approach is justified.