Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 940-730-5 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Basic toxicokinetics
Administrative data
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Study period:
- 1977
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Acceptable well-documented study report which meets basic scientific principles.
- Justification for type of information:
- The justification for read across is provided as an attachment in IUCLID Section 13.
Cross-reference
- Reason / purpose for cross-reference:
- read-across: supporting information
Reference
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- supporting study
- Study period:
- 1977
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Acceptable well-documented study report which meets basic scientific principles.
- Justification for type of information:
- The justification for read across is provided as an attachment in IUCLID Section 13.
- Reason / purpose for cross-reference:
- read-across source
- Details on absorption:
- No information
- Details on distribution in tissues:
- Deuterium was found in the fatty acids of the body fats and the liver lipids especially after feeding octadecane and hexadecane
- Details on excretion:
- No information
- Details on metabolites:
- oleic, stearic, and palmitic acids containing deuterium have been isolated
- Conclusions:
- Interpretation of results: no data
After six days an increase of deuterium content in the body fluid of all the rats was observed indicating that the labeled compounds had been metabolized. - Executive summary:
This data is being read across from the source study that tested Paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons
based on analogue read across.
Labeled paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons by addition of deuterium have been added in oily solution to normal rats’ food. After six days an increase of deuterium content in the body fluid of all the rats was observed indicating that the labeled compounds had been metabolized. Deuterium was found in the fatty acids of the body fats and the liver lipids especially after feeding octadecane and hexadecane. Isolating oleic, stearic, and palmitic acids containing deuterium, indicated that methyl- and beta-oxidation of these hydrocarbons has occurred. Fatty acids resulting from the metabolism of hydrocarbons with shorter chains were not deposited but in these cases the urine contained fatty acids with higher deutrium content than after administration of octadecane and hexadecane. According to the deuterium content of the neutral fractions from the liver and body lipids all the hydrocarbons tested were deposited only to a small extent, the largest depots occurring mainly after feeding with octadecane and hexadecane.
Data source
Reference
- Reference Type:
- publication
- Title:
- Demonstration of oxidation of a naphthenic hydrocarbon Dodecylcyclohexane in rats
- Author:
- Tulliez J., Peleran J. C.
- Year:
- 1 977
- Bibliographic source:
- Febs Letters 75(1): 120-122
Materials and methods
- Principles of method if other than guideline:
- Labeled paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons by addition of deuterium have been added in oily solution to normal rats’ food.
- GLP compliance:
- not specified
Test material
- Reference substance name:
- Paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons
- IUPAC Name:
- Paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons
- Details on test material:
- Paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons
Constituent 1
- Radiolabelling:
- yes
Test animals
- Species:
- rat
Administration / exposure
- Route of administration:
- oral: feed
Results and discussion
Toxicokinetic / pharmacokinetic studies
- Details on absorption:
- No information
- Details on distribution in tissues:
- Deuterium was found in the fatty acids of the body fats and the liver lipids especially after feeding octadecane and hexadecane
- Details on excretion:
- No information
Metabolite characterisation studies
- Details on metabolites:
- oleic, stearic, and palmitic acids containing deuterium have been isolated
Applicant's summary and conclusion
- Conclusions:
- Interpretation of results: no data
After six days an increase of deuterium content in the body fluid of all the rats was observed indicating that the labeled compounds had been metabolized. - Executive summary:
Labeled paraffins with 8-18 C atoms prepared from unsaturated hydrocarbons by addition of deuterium have been added in oily solution to normal rats’ food. After six days an increase of deuterium content in the body fluid of all the rats was observed indicating that the labeled compounds had been metabolized. Deuterium was found in the fatty acids of the body fats and the liver lipids especially after feeding octadecane and hexadecane. Isolating oleic, stearic, and palmitic acids containing deuterium, indicated that methyl- and beta-oxidation of these hydrocarbons has occurred. Fatty acids resulting from the metabolism of hydrocarbons with shorter chains were not deposited but in these cases the urine contained fatty acids with higher deutrium content than after administration of octadecane and hexadecane. According to the deuterium content of the neutral fractions from the liver and body lipids all the hydrocarbons tested were deposited only to a small extent, the largest depots occurring mainly after feeding with octadecane and hexadecane.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.