Registration Dossier

Diss Factsheets

Administrative data

Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
Experimental starting date: 29 January 2019 Experimental completion date: 28 February 2019
Reliability:
1 (reliable without restriction)

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2019
Report date:
2019

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Deviations:
no
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
Deviations:
no
GLP compliance:
yes
Type of method:
effusion method: vapour pressure balance

Test material

Constituent 1
Chemical structure
Reference substance name:
3-sec-[C15-18-(branched and linear)-alk-2-enyl]pyrrolidine-2,5-dione
EC Number:
701-350-3
Molecular formula:
Not possible to assign, UVCB
IUPAC Name:
3-sec-[C15-18-(branched and linear)-alk-2-enyl]pyrrolidine-2,5-dione
Test material form:
liquid
Details on test material:
- Appearance: brown liquid
- Storage: room temperature, in the dark
Specific details on test material used for the study:
Identification: X-16151
Chemical Name: Long chain alkenyl heterocycle
Appearance/physical state: Amber viscous liquid
Batch: R18 13101
Purity: UVCB - 100%
Expiry Date: 02 August 2020
Storage Conditions: Room temperature in the dark

Results and discussion

Vapour pressure
Key result
Temp.:
25 °C
Vapour pressure:
0 Pa

Any other information on results incl. tables

Results

Graphs of Log10Vapor Pressure vs Reciprocal Temperature Runs 6 to 8 are shown in Attachment 2 of this Summary.

Recorded temperatures, mass differences and the resulting calculated values of vapor pressure are shown in the following tables:

Run 6

Table1– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

110

383.15

0.002610

62.06

6.206e-08

0.08616

-1.06469

111

384.15

0.002603

59.95

5.995e-08

0.08323

-1.07972

112

385.15

0.002596

68.71

6.871e-08

0.09539

-1.02050

113

386.15

0.002590

89.90

8.990e-08

0.12480

-0.90379

114

387.15

0.002583

84.08

8.408e-08

0.11672

-0.93285

115

388.15

0.002576

90.85

9.085e-08

0.12612

-0.89922

116

389.15

0.002570

103.43

1.034e-07

0.14359

-0.84288

117

390.15

0.002563

105.04

1.050e-07

0.14582

-0.83618

118

391.15

0.002557

122.72

1.227e-07

0.17037

-0.76861

119

392.15

0.002550

140.41

1.404e-07

0.19493

-0.71012

120

393.15

0.002544

156.59

1.566e-07

0.21739

-0.66276

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 6 gives the following statistical data using an unweighted least squares treatment.

Slope:

-6.14 x 103

Standard error in slope:

436

 

Intercept:

14.9

Standard error in intercept:

1.13

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -6.14 x 103/temp(K) + 14.9

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -5.66.

Run 7

Table2– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

110

383.15

0.002610

61.03

6.103e-08

0.08473

-1.07196

111

384.15

0.002603

62.65

6.265e-08

0.08697

-1.06063

112

385.15

0.002596

72.51

7.251e-08

0.10066

-0.99714

113

386.15

0.002590

79.77

7.977e-08

0.11074

-0.95570

114

387.15

0.002583

89.94

8.994e-08

0.12486

-0.90358

115

388.15

0.002576

92.99

9.299e-08

0.12909

-0.88911

116

389.15

0.002570

103.82

1.038e-07

0.14413

-0.84125

117

390.15

0.002563

121.99

1.220e-07

0.16935

-0.77121

118

391.15

0.002557

133.80

1.338e-07

0.18575

-0.73107

119

392.15

0.002550

137.44

1.374e-07

0.19080

-0.71942

120

393.15

0.002544

149.66

1.497e-07

0.20777

-0.68242

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 7 gives the following statistical data using an unweighted least squares treatment.

Slope:

-6.25 x 103

Standard error in slope:

222

 

Intercept:

15.2

Standard error in intercept:

0.573

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -6.25 x 103/temp(K) + 15.2

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -5.74.

Run 8

Table3– Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

110

383.15

0.002610

58.73

5.873e-08

0.08153

-1.08868

111

384.15

0.002603

68.31

6.831e-08

0.09483

-1.02305

112

385.15

0.002596

70.52

7.052e-08

0.09790

-1.00922

113

386.15

0.002590

75.41

7.541e-08

0.10469

-0.98009

114

387.15

0.002583

84.52

8.452e-08

0.11734

-0.93055

115

388.15

0.002576

96.06

9.606e-08

0.13336

-0.87497

116

389.15

0.002570

99.73

9.973e-08

0.13845

-0.85871

117

390.15

0.002563

114.78

1.148e-07

0.15934

-0.79768

118

391.15

0.002557

121.47

1.215e-07

0.16863

-0.77307

119

392.15

0.002550

153.42

1.534e-07

0.21299

-0.67164

120

393.15

0.002544

138.64

1.386e-07

0.19247

-0.71564

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 8 gives the following statistical data using an unweighted least squares treatment.

Slope:

-6.09 x 103

Standard error in slope:

326

 

Intercept:

14.8

Standard error in intercept:

0.839

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -6.09 x 103/temp(K) + 14.8

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -5.62.

The values of vapor pressure at 25 °C, extrapolated from each graph, are summarized in the following table:

Table 4            Summary of Vapor Pressure Data

Run

Log10[Vp(25 ºC)]

6

-5.66

7

-5.74

8

-5.62

Mean

-5.67

Vapor Pressure

2.13 x 10-6Pa

Applicant's summary and conclusion

Conclusions:
The vapor pressure of the test item has been determined to be 2.1 E-6 Pa at 25 ºC.
Executive summary:

The determination was carried out using a procedure designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC)

No 440/2008 of 30 May 2008 and Method 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.

Discussion

The test item did not change in appearance under the conditions used in the determination.

A total of 8 runs were completed for the main sequence. Equilibrium with regard to vapor pressure has been assessed to have been reached over the final 3 runs; thus the final 3 runs have been used to calculate the vapor pressure. 

The results may represent rounded values obtained by calculations based on the exact raw data.

Conclusion

The vapor pressure of the test item has been determined to be 2.1 x 10-6Pa at 25 ºC.

Categories Display