Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 411-700-4 | CAS number: 140921-24-0 HÄRTER VERSUCHSPRODUKT LS 2959E; HÄRTER VP LS 2959E
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
- Endpoint:
- basic toxicokinetics, other
- Type of information:
- other: Expert statement
- Adequacy of study:
- key study
- Study period:
- 2013
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Expert statement, no study available
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- Expert statement
- GLP compliance:
- no
- Details on test animals or test system and environmental conditions:
- not applicable
- Details on exposure:
- not applicable
- Duration and frequency of treatment / exposure:
- not applicable
- No. of animals per sex per dose / concentration:
- not applicable
- Positive control reference chemical:
- not applicable
- Details on study design:
- not applicable
- Details on absorption:
- Incozol EH was shown to immediately hydrolyse when getting in contact with water. Therefore, bioavailability after oral exposure was assessed only for the hydrolysis products 2-ethylhexanal and “fully hydrolysed Incozol EH”. Based on physico-chemical properties especially water solubility and log Pow value of “fully hydrolysed Incozol EH”, dissolution in the gastro-intestinal fluids and contact with the mucosal surface might occur and may allow direct uptake into the systemic circulation through aqueous pores or via carriage of the molecules across the membrane with the bulk passage of water. Passive diffusion might be a preferred entry route of 2-ethylhexanal into systemic circulation as it has lipophilic properties and a low water solubility. Clinical signs after a single administration of 2000 mg Incozol EH/kg bw in 1,2-propanediol in an acute oral toxicity study performed on rats were considered to be treatment-related and not associated to bioavailability of the test item. However, long-term administration of high doses of Incozol EH in a 28-day repeated dose toxicity study on rats indicated that the compound or rather its hydrolysis products became bioavailable.
Based on the vapour pressure of approximately 0.001 Pa at 20 °C Incozol EH is not expected to become airborne in its vapour form. However, if Incozol EH is degraded hydrolytically, inhalation exposure of 2-ethylhexanal, one of the hydrolysis products, could not be excluded due to its higher vapour pressure in comparison to Incozol EH itself. If the substance would reach the lungs, absorption directly across the respiratory tract epithelium by passive diffusion is likely to occur due to its log Pow value (3.07) and water solubility (450 mg/L).
Based on the molecular weight and physico–chemical properties of Incozol EH dermal penetration of the substance might be slow. It is general accepted that if a compound’s molecular weight is above 500 g/mol and water solubility falls between 1-100 mg/L, absorption can be anticipated to be low to moderate. These assumptions based on the physico-chemical properties are further supported by the results achieved from a GPMT which revealed that Incozol EH has skin sensitising properties and is, thus, absorbed dermally to a certain extent. - Details on distribution in tissues:
- Assuming that 2-ethylhexanal as one of the hydrolysis products is absorbed into the body following oral intake, it may be distributed into the interior part of the cells by passive diffusion due to its lipophilic properties and in turn the intracellular concentration may be higher than extracellular concentration particularly in adipose tissues. Direct transport through aqueous pores is likely to be an entry route to the systemic circulation of “fully hydrolysed Incozol EH” due to its higher water solubility compared to 2-ethylhexanal.
Based on its log Pow and BCF value Incozol EH might have a weak bioaccumulation potential. However, as it immediately hydrolyses when getting in contact with water bioaccumulation in the human body can be excluded. This assumption is supported by the lower BCF values of the hydrolysis products compared to Incozol EH. - Details on excretion:
- As discussed above, Incozol EH will be hydrolysed after being in contact with an aqueous solution and will probably not be excreted in its non-hydrolysed form. The degradation product “fully hydrolysed Incozol EH” might be biliary excreted due to its molecular weight (>300 g/mol in rat). Renal excretion might be a preferred excretion pathway of degradation products of “fully hydrolysed Incozol EH” described above. Oxidation and conjugation products of 2-ethylhexanal were shown to be excreted via urine (English et al, 1998).
- Details on metabolites:
- Based on the structure of the molecule, Incozol EH immediately degraded hydrolytically after being in contact with an aqueous solution. The first degradation product “fully hydrolysed Incozol EH” may be further degraded hydrolytically to a certain extend to diethanolamine, 1,6-hexanediamine and carbon dioxide under basic conditions. 2-ethylhexanal is estimated to be oxidised to 2-ethylhexanoic acid which was shown to be conjugated with glucuronic acid or further oxidised to 2-ethyl-1,6-hexanedioic acid, 2-ethyl-6-hydroxyhexanoic acid and 2-ethylketohexanoic acid (English et al, 1998). No metabolic activation of Incozol EH and its hydrolysis products is expected as indicated by the negative in vitro genotoxicity assays in the presence of S9 mix.
- Bioaccessibility (or Bioavailability) testing results:
- Taken together, physico-chemical properties and experimental data indicate a low bioavailability of Incozol EH via oral and dermal route. Bioavailability after inhalation exposure is considered to be unlikely due to the low vapour pressure of the non-hydrolysed compound.
- Conclusions:
- Based on physico-chemical characteristics, particularly water solubility and octanol-water partition coefficient absorption via oral and inhalation route is expected to be low. However, slow dermal absorption could not be excluded. Incozol EH is immediately hydrolysed into “fully hydrolysed Incozol EH” and 2-ethylhexanal. If absorbed, passive diffusion and active transport through aqueous pores is likely to be an entry routes to the systemic circulation. No metabolic activation of Incozol EH and its hydrolysis products is expected. Excretion via faeces is assumed to be the main excretion pathway of “fully hydrolysed Incozol EH” due to its molecular weight. Oxidation and conjugation products of 2-ethylhexanal were shown to be excreted via urine. Based on hydrolytical conversion of Incozol EH bioaccumulation is not likely to occur based on physico-chemical properties of the hydrolysis products.
Reference
Description of key information
Based on physico-chemical characteristics, particularly water solubility and octanol-water partition coefficient absorption via oral and inhalation route is expected to be low. However, slow dermal absorption could not be excluded. Incozol EH is immediately hydrolysed into “fully hydrolysed Incozol EH” and 2-ethylhexanal. If absorbed, passive diffusion and active transport through aqueous pores is likely to be an entry route to the systemic circulation. No metabolic activation of Incozol EH and its hydrolysis products is expected. Excretion via faeces is assumed to be the main excretion pathway of “fully hydrolysed Incozol EH” due to its molecular weight. Oxidation and conjugation products of 2-ethylhexanal were shown to be excreted via urine. Based on hydrolytical conversion of Incozol EH bioaccumulation is not likely to occur based on physico-chemical properties of the hydrolysis products.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
Additional information
Toxicological profile of Incozol EH
An acute oral toxicity study conducted with Incozol EH using rats revealed a LD50 value of greater the 2000 mg/kg bw (Bayer, 1991). Signs of intoxication were rough coat, increased salivation and apathy, observed within 24 hours post-treatment. In a second study diuresis was observed when Incozol EH was administered once orally to rats at 5000 mg/kg bw. No animal died. No mortality and no systemic signs of toxicity occurred in an acute dermal toxicity study with the test item (Bayer 1992). The LD50 value was therefore determined to be greater than 2000 mg/kg bw. No dermal irritation symptoms were observed in all animals. No acute inhalation toxicity study was performed with Incozol EH as inhalation exposure is considered negligible due to its low vapour pressure.
In two in vivo skin irritation studies conducted with Incozol EH on rabbits no skin irritation was observed (Bayer 1978, Bayer 1991). Incozol EH did not cause severe eye irritation in two in vivo eye irritation studies on rabbits (Bayer 1978, Bayer 1991). A guinea pig maximisation test (GPMT) revealed that Incozol EH has skin sensitising properties (Bayer, 1992).
Incozol EH did not induced reverse mutations in two bacterial reverse mutation tests (Ames test) with four Salmonella typhimurium strains both in the absence and presence of a metabolic activation system (Bayer, 1988, 1991). An in vivo micronucleus test on mice revealed no increase of micronucleated normochromatic erythrocytes. The test substance was therefore judged to be not clastogenic in vivo (Bayer, 1992). Additionally, the test item did not induce statistically significant increases in DNA strand breaks at any of the tested dose levels in liver or stomach cells in an in vivo Comet assay.
A 28 day repeated dose toxicity study with Incozol EH was performed in male and female Wistar rats. The chemical was administered orally (by gavage) once a day for a total of 28 days at 0 (vehicle control), 40, 200 and 1000 mg/kg bw/day. No mortality was observed through this study. An increased water consumption compared to control group was observed in male and female animals of the high dose group. Food consumption was only increased in female animals of the 1000 mg/kg bw/day dose group. In hematological and histopathological analysis, no test item related effects could be observed on blood parameters and hematopoietic organs up to 200 mg test item/kg bw/day in male animals and up to 1000 mg/kg bw/day in female animals. There was a significant decrease in hemoglobin concentration and hematocrit value and a lower reticulocyte count compared to control group in male animals of the high dose group. Administration of 1000 mg/kg bw/day revealed an increased AST activity in female animals and a reduced ALT activity in male animals compared to control group. Albumin and total protein level were significantly increased in both sexes of the 1000 mg/kg bw/day dose group. There was a significant increase of liver weights in male and female animals of the 1000 mg/kg bw/day dose group. In the same dose group, an increased adrenal gland and kidney weight was observed in male and female animals, respectively. As there was no macroscopic or microscopic pathological correlation a test item related kidney damage is not considered. In the absence of any blood biochemical effect or macroscopic or microscopic organ and tissue alterations the respective NOAEL was set to 200 mg/kg bw/day for male and female animals.
Toxicokinetic analysis of Incozol EH
Incozol EH is a pale yellowish liquid at room temperature with a molecular weight of 598.8578 g/mol. The calculated water solubility of the substance is 1.68 mg/L at 20 °C. The log Pow of Incozol EH was estimated to be 6.85. Based on this log Pow, a BCF of 652.3 L/kg wet-wt was calculated. The vapour pressure of Incozol EH is approximately 0.001 Pa at 25 °C. In an aqueous solution, Incozol EH is immediately degraded hydrolytically to 2-ethylhexanal and 1,6 hexanediyl-bis-carbamic acid bis(N-hydroxyethyl-2-aminoethyl) ester (“fully hydrolysed Incozol EH”). Both hydrolysis substances have a lower log Pow value than Incozol EH itself (approximately ‑1.03 for “fully hydrolysed Incozol EH” and 3.07 for 2-ethylhexanal). Also the BCF values are lower as compared to Incozol EH (approximately 3.162 L/kg wet-wt for “fully hydrolysed Incozol EH” and 49.27 L/kg wet-wt for 2-ethylhexanal). Water solubility of both hydrolysis products is higher than of Incozol EH itself (16 g/L for “fully hydrolysed Incozol EH” and 450 mg/L for 2-ethylhexanal). The vapour pressure of 2-ethylhexanal is above the value of Incozol EH (2.8 hPa).
Absorption
Incozol EH was shown to immediately hydrolyse when getting in contact with water. Therefore, bioavailability after oral exposure was assessed only for the hydrolysis products 2-ethylhexanal and “fully hydrolysed Incozol EH”. Based on physico-chemical properties especially water solubility and log Pow value of “fully hydrolysed Incozol EH”, dissolution in the gastro-intestinal fluids and contact with the mucosal surface might occur and may allow direct uptake into the systemic circulation through aqueous pores or via carriage of the molecules across the membrane with the bulk passage of water. Passive diffusion might be a preferred entry route of 2-ethylhexanal into systemic circulation as it has lipophilic properties and a low water solubility. Clinical signs after a single administration of 2000 mg Incozol EH/kg bw in 1,2-propanediol in an acute oral toxicity study performed on rats were considered to be treatment-related and not associated to bioavailability of the test item. However, long-term administration of high doses of Incozol EH in a 28-day repeated dose toxicity study on rats indicated that the compound or rather its hydrolysis products became bioavailable.
Based on the vapour pressure of approximately 0.001 Pa at 20 °C Incozol EH is not expected to become airborne in its vapour form. However, if Incozol EH is degraded hydrolytically, inhalation exposure of 2-ethylhexanal, one of the hydrolysis products, could not be excluded due to its higher vapour pressure in comparison to Incozol EH itself. If the substance would reach the lungs, absorption directly across the respiratory tract epithelium by passive diffusion is likely to occur due to its log Pow value (3.07) and water solubility (450 mg/L).
Based on the molecular weight and physico–chemical properties of Incozol EH dermal penetration ofthe substance might be slow. It is general accepted that if a compound’s molecular weight is above 500 g/mol and water solubility falls between 1-100 mg/L, absorption can be anticipated to be low to moderate. These assumptions based on the physico-chemical properties are further supported by the results achieved from a GPMT which revealed that Incozol EH has skin sensitising properties and is thus absorbed dermally to a certain extent.
Taken together, physico-chemical properties and experimental data indicate a low bioavailability of Incozol EH via oral and dermal route. Bioavailability after inhalation exposure is considered to be unlikely due to the low vapour pressure of the non-hydrolysed compound.
Distribution
Assuming that 2-ethylhexanal as one of the hydrolysis products is absorbed into the body following oral intake, it may be distributed into the interior part of the cells by passive diffusion due to its lipophilic properties and in turn the intracellular concentration may be higher than extracellular concentration particularly in adipose tissues. Direct transport through aqueous pores is likely to be an entry route to the systemic circulation of “fully hydrolysed Incozol EH” due to its higher water solubility compared to 2-ethylhexanal.
Based on its log Pow and BCF value Incozol EH might have a weak bioaccumulation potential. However, as it immediately hydrolyses when getting in contact with water bioaccumulation in the human body can be excluded. This assumption is supported by the lower BCF values of the hydrolysis products compared to Incozol EH.
Metabolism
Based on the structure of the molecule, Incozol EH immediately degraded hydrolytically after being in contact with an aqueous solution. The first degradation product “fully hydrolysed Incozol EH” may be further degraded hydrolytically to a certain extend to diethanolamine, 1,6-hexanediamine and carbon dioxide under basic conditions. 2-ethylhexanal is estimated to be oxidised to 2-ethylhexanoic acid which was shown to be conjugated with glucuronic acid or further oxidised to2-ethyl-1,6-hexanedioic acid,2-ethyl-6-hydroxyhexanoic acid and 2-ethylketohexanoic acid (English et al, 1998).No metabolic activation of Incozol EH and its hydrolysis products is expected as indicated by the negative in vitro genotoxicity assays in the presence of S9 mix.
Excretion
As discussed above, Incozol EH will be hydrolysed after being in contact with an aqueous solution and will probably not be excreted in its non-hydrolysed form. The degradation product “fully hydrolysed Incozol EH” might be biliary excreted due to its molecular weight (>300 g/mol in rat). Renal excretion might be a preferred excretion pathway of degradation products of “fully hydrolysed Incozol EH” described above. Oxidation and conjugation products of 2-ethylhexanal were shown to be excreted via urine (English et al, 1998).
Summary
Based on physico-chemical characteristics, particularly water solubility and octanol-water partition coefficient absorption via oral and inhalation route is expected to be low. However, slow dermal absorption could not be excluded. Incozol EH is immediately hydrolysed into“fully hydrolysed Incozol EH” and 2-ethylhexanal. If absorbed, passive diffusion and active transport through aqueous pores is likely to be an entry routes to the systemic circulation. No metabolic activation of Incozol EH and its hydrolysis products is expected. Excretion via faeces is assumed to be the main excretion pathway of “fully hydrolysed Incozol EH” due to its molecular weight. Oxidation and conjugation products of 2-ethylhexanal were shown to be excreted via urine. Based on hydrolytical conversion of Incozol EH bioaccumulation is not likely to occur based on physico-chemical properties of the hydrolysis products.
References
ECHA (2008), Guidance on information requirements and chemical safety assessment, Chapter R.7c: Endpoint specific guidance.
Marquardt H., Schäfer S. (2004). Toxicology. Academic Press, San Diego, USA, 2nd Edition 688-689.
English JC, Deisinger PJ, Guest D. (1998) Metabolism of 2-ethylhexanoic acid administered orally or dermally to the female Fischer 344 rat. Xenobiotica; 28(7):699-714.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.