Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Basic toxicokinetics

Currently viewing:

Administrative data

Endpoint:
basic toxicokinetics
Type of information:
other: experimental result and QSAR
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: Test procedure in accordance with generally accepted scientific standards and described in sufficient detail

Data source

Reference
Reference Type:
other: Thesis
Title:
Unnamed
Year:
2002

Materials and methods

Objective of study:
absorption
metabolism
Test guideline
Qualifier:
no guideline available
Principles of method if other than guideline:
A physiologically based pharmacokinetic model has been formulated to predict the pharmacokinetics and systemic disposition of alkylmethacrylate esters in rats and humans.
GLP compliance:
not specified

Test material

Constituent 1
Chemical structure
Reference substance name:
Methyl methacrylate
EC Number:
201-297-1
EC Name:
Methyl methacrylate
Cas Number:
80-62-6
Molecular formula:
C5H8O2
IUPAC Name:
methyl methacrylate
Details on test material:
Methyl methacrylate from Ineos Acrylics (Lot 98/15; purity > 99%),

Test animals

Species:
other: rat and human
Strain:
other: Wistar/Fischer F344/ not applicable
Sex:
male
Details on test animals or test system and environmental conditions:
Epidermal membrane absorption studies
Skin was used from male rats of the Wistar-derived strain (supplied by Charles River UK Ltd, Margate, Kent, UK.) aged 28 days ± 2 days

Whole skin absorption studies
Skin was taken from male Fischer F344 (supplied by Harlan Olac) rats weighing between 200 and 250 g.

Human epidermal membrane absorption studies
Extraneous tissue was removed from human abdominal whole skin samples obtained post mortem in accordance with local ethical guidelines.

Administration / exposure

Route of administration:
intravenous
Details on study design:
A series of in vitro and in vivo studies with a series of methacrylates were used to develop PBPK models that accurately predict the metabolism and fate of these monomers. The studies confirmed that alkyl-methacrylate esters are rapidly hydrolyzed by ubiquitous carboxylesterases. First pass (local) hydrolysis of the parent ester has been shown to be significant for all routes of exposure. In vivo measurements of rat liver indicated this organ has the greatest esterase activity. Similar measurements for skin microsomes indicated approximately 20-fold lower activity than for liver. However, this activity was substantial and capable of almost complete first-pass metabolism of the alkyl-methacrylates. For example, no parent ester penetrated whole rat skin in vitro for n-butyl methacrylate, octyl methacrylate or lauryl methacrylate tested experimentally with only methacrylic acid identified in the receiving fluid. In addition, model predictions indicate that esters of ethyl methacrylate or larger would be completely hydrolyzed before entering the circulation via skin absorption. This pattern is consistent with a lower rate of absorption for these esters such that the rate is within the metabolic capacity of the skin. Parent ester also was hydrolyzed by S9 fractions from nasal epithelium and was predicted to be effectively hydrolyzed following inhalation exposure.

Results and discussion

Main ADME results
Type:
metabolism
Results:
Half-life of MMA after i.V. injection: 4.4 min (PBPK estimate)

Metabolite characterisation studies

Metabolites identified:
yes
Details on metabolites:
Methacrylic acid

Any other information on results incl. tables

These studies showed that any systemically absorbed parent ester will be effectively removed during the first pass through the liver (CL as % LBF, 

see table). In addition, removal of methacrylic acid from the blood also

occurs rapidly (T50%; see table).  

Table 1:
Rate constants for ester hydrolysis by rat-liver microsomes and predicted 

systemic fate kinetics for methacrylates following i.v. administration:

 Ester    Vmax       Km        CL    T50%    Cmax    Tmax
----------------------------------------------------------
MAA        -         -       51.6%    -       -       -
MMA       445.8     164.3    98.8%    4.4    14.7     1.7
EMA       699.2     106.2    99.5%    4.5    12.0     1.8
i-BMA     832.9     127.4    99.5%   11.6     7.4     1.6
n-BMA     875.7      77.3    99.7%    7.8     7.9     1.8
HMA       376.4      34.4    99.7%   18.5     5.9     1.2
2EHMA     393.0      17.7    99.9%   23.8     5.0     1.2
OMA       224.8      11.0    99.9%   27.2     5.0     1.2
----------------------------------------------------------

Vmax (nM/min/mg) and Km (µM) from rat-liver microsome (100 µg/ml)

determinations;  
CL = clearance as % removed from liver blood flow, T50% = Body  elimination time

 (min) for 50% parent ester, Cmax = maximum concentration  (mg/L) of MAA in 

blood, Tmax = time (min) to peak MAA concentration in  blood from model 

predictions.

---

Table 2:
Rate constants for ester hydrolysis by human-liver microsome samples:

 Ester    Vmax (nM/min*mg) Km (mM) CL (µL/min*mg)    
-----------------------------------------------
MMA       1721      4103     419   
EMA        936      1601     584  
i-BMA       80       441     181
n-BMA      211       158    1332
HMA        229 66 3465
2EHMA      53        48    1109
OMA        243 38 6403 ----------------------------------------------------------

CL is calculated from the mean Vmax and Km

Applicant's summary and conclusion

Conclusions:
The in vivo and in vitro investigations as well as the PBPK models developed from the data showed that alkyl-methacrylate esters are rapidly absorbed and are hydrolyzed at exceptionally high rates to methacrylic acid by high capacity, ubiquitous carboxylesterases. Further, the removal of the hydrolysis product, methacrylic acid, also is very rapid (minutes).