Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Vapour pressure

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
21 January 2021 to 26 January 2021
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study with acceptable restrictions
Remarks:
Vapour pressure was determined in the melting point range, so it is not known which form the vapour pressure measurement was taken. Overall the study was performed in accordance with the guideline and documented in sufficient detail, so this restriction in reliability is considered to be acceptable.
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
Version / remarks:
2006
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Version / remarks:
2008
GLP compliance:
yes (incl. QA statement)
Type of method:
effusion method: vapour pressure balance
Key result
Temp.:
25 °C
Vapour pressure:
0.002 Pa



A total of 10 runs were performed for the main sequence, the mass readings achieved during these runs was very low thus producing graphs for extrapolation at the limit of the instrument. Runs 1 and 2 have not been reported as equilibration/degassing was still in progress, runs 6 and 7 have not been reported as the graphs produced were truly non-linear. Equilibrium has been achieved over the reported runs which have been used to calculate the vapor pressure of the test item. The use of these reported runs is considered more accurate than the in-house estimation method.





The results may represent rounded values obtained by calculations based on the exact raw data.


 


Recorded temperatures, mass differences and the resulting calculated values of vapour pressure are shown in the following tables:


 


Run 3


Table 1 - Vapour Pressure Data


















































































































Temperature (°C)



Temperature (K)



Reciprocal Temperature (K-1)



Mass Difference (µg)



Mass Difference (kg)



Vapour Pressure (Pa)



Log10 Vp



36



309.15



0.003235



7.93



7.93e-09



0.01101



-1.95821



37



310.15



0.003224



8.56



8.56e-09



0.01188



-1.92518



38



311.15



0.003214



8.73



8.73e-09



0.01212



-1.91650



39



312.15



0.003204



8.70



8.70e-09



0.01208



-1.91793



40



313.15



0.003193



13.76



1.376e-08



0.01910



-1.71897



41



314.15



0.003183



12.30



1.230e-08



0.01708



-1.76751



42



315.15



0.003173



13.67



1.367e-08



0.01898



-1.72170



43



316.15



0.003163



11.43



1.143e-08



0.001587



-1.79942



44



317.15



0.003153



17.99



1.799e-08



0.02397



-1.60258



45



318.15



0.003143



17.02



1.702e-08



0.02363



-1.62654



46



319.15



0.003133



17.84



1.784e-08



0.02477



-1.60607






A plot of Log10 (vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 3 gives the following statistical data using an unweighted least squares treatment.






Slope: -3.70 x 103
Standard error in slope: 520


Intercept: 9.99
Standard error in intercept: 1.66






The results obtained indicate the following vapor pressure relationship:
Log10 (Vp (Pa)) = -3.70 x 103/temp(K) + 9.99


The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.41.


 


Run 4


Table 2 - Vapour Pressure Data


















































































































Temperature (°C)



Temperature (K)



Reciprocal Temperature (K-1)



Mass Difference (µg)



Mass Difference (kg)



Vapour Pressure (Pa)



Log10 Vp



36



309.15



0.003235



6.60



6.60e-09



0.00916



-2.03810



37



310.15



0.003224



7.04



7.04e-09



0.00977



-2.01011



38



311.15



0.003214



10.46



1.046e-08



0.01452



-1.83803



39



312.15



0.003204



6.04



6.04e-09



0.00839



-2.07624



40



313.15



0.003193



9.17



9.17e-09



0.01273



-1.89517



41



314.15



0.003183



10.53



1.053e-08



0.01462



-1.83505



42



315.15



0.003173



10.98



1.098e-08



0.01524



-1.81702



43



316.15



0.003163



13.03



1.303e-08



0.001809



-1.74256



44



317.15



0.003153



14.73



1.473e-08



0.02045



-1.68931



45



318.15



0.003143



18.65



1.865e-08



0.02589



-1.58687



46



319.15



0.003133



14.97



1.497e-08



0.02078



-1.68235



 




A plot of Log10 (vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 4 gives the following statistical data using an unweighted least squares treatment.






Slope: -4.17 x 103
Standard error in slope: 705


Intercept: 11.4
Standard error in intercept: 2.24






The results obtained indicate the following vapor pressure relationship:
Log10 (Vp (Pa)) = -4.17 x 103/temp(K) + 11.4


The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.55.


 


Run 5


Table 3 - Vapour Pressure Data


















































































































Temperature (°C)



Temperature (K)



Reciprocal Temperature (K-1)



Mass Difference (µg)



Mass Difference (kg)



Vapour Pressure (Pa)



Log10 Vp



36



309.15



0.003235



6.38



6.83e-09



0.00886



-2.05257



37



310.15



0.003224



5.66



5.66e-09



0.00786



-2.10458



38



311.15



0.003214



4.68



4.68e-08



0.00650



-2.18709



39



312.15



0.003204



4.82



4.82e-09



0.00669



-2.17457



40



313.15



0.003193



6.83



6.83e-09



0.00948



-2.02319



41



314.15



0.003183



6.75



6.75e-09



0.00937



-2.02826



42



315.15



0.003173



7.54



7.54e-09



0.01047



-1.98005



43



316.15



0.003163



17.63



1.763e-08



0.02447



-1.61137



44



317.15



0.003153



12.29



1.299e-08



0.01706



-1.76802



45



318.15



0.003143



10.41



1.041e-08



0.01445



-1.84013



46



319.15



0.003133



15.49



1.549e-08



0.02150



-1.66756





A plot of Log10 (vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 5 gives the following statistical data using an unweighted least squares treatment.






Slope: -4.82 x 103
Standard error in slope: 1.18 x 103


Intercept: 13.4
Standard error in intercept: 3.56






The results obtained indicate the following vapor pressure relationship:
Log10 (Vp (Pa)) = -4.82 x 103/temp(K) + 13.4


The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.77.


 


Run 8


Table 4 - Vapour Pressure Data


















































































































Temperature (°C)



Temperature (K)



Reciprocal Temperature (K-1)



Mass Difference (µg)



Mass Difference (kg)



Vapour Pressure (Pa)



Log10 Vp



36



309.15



0.003235



4.59



4.59e-09



0.00637



-2.19586



37



310.15



0.003224



3.28



3.28e-09



0.00455



-2.34199



38



311.15



0.003214



4.89



4.89e-09



0.00679



-2.16813



39



312.15



0.003204



4.74



4.74e-09



0.00658



-2.18177



40



313.15



0.003193



8.44



8.44e-09



0.01172



-1.93107



41



314.15



0.003183



9.60



9.60e-09



0.01333



-1.87517



42



315.15



0.003173



7.92



7.92e-09



0.01099



-1.95900



43



316.15



0.003163



8.79



8.79e-09



0.01220



-1.91364



44



317.15



0.003153



7.48



7.48e-09



0.01038



-1.98380



45



318.15



0.003143



8.82



8.82e-09



0.01224



-1.91222



46



319.15



0.003133



8.69



8.69e-09



0.01206



-1.91865



 




A plot of Log10 (vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 8 gives the following statistical data using an unweighted least squares treatment.






Slope: -3.74 x 103
Standard error in slope: 928


Intercept: 987
Standard error in intercept: 2.96






The results obtained indicate the following vapor pressure relationship:
Log10 (Vp (Pa)) = -3.74 x 103/temp(K) + 9.87


The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.67.


 


Run 9


Table 5 - Vapour Pressure Data


















































































































Temperature (°C)



Temperature (K)



Reciprocal Temperature (K-1)



Mass Difference (µg)



Mass Difference (kg)



Vapour Pressure (Pa)



Log10 Vp



36



309.15



0.003235



5.11



5.11e-09



0.00709



-2.14935



37



310.15



0.003224



3.21



3.21e-09



0.00446



-2.35067



38



311.15



0.003214



4.80



4.80e-09



0.00666



-2.17653



39



312.15



0.003204



1.63



1.63e-09



0.00226



-2.64589



40



313.15



0.003193



5.30



5.30e-09



0.00736



-2.13312



41



314.15



0.003183



3.52



3.52e-09



0.00489



-2.31069



42



315.15



0.003173



5.17



5.17e-09



0.00718



-2.14388



43



316.15



0.003163



4.02



4.20e-09



0.00558



-2.25337



44



317.15



0.003153



6.63



6.63e-09



0.00920



-2.03621



45



318.15



0.003143



7.35



7.35e-09



0.01020



-1.99140



46



319.15



0.003133



8.69



8.69e-09



0.01206



-1.91865





A plot of Log10 (vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 9 gives the following statistical data using an unweighted least squares treatment.






Slope: -3.37 x 103
Standard error in slope: 1.61 x 103


Intercept: 8.54
Standard error in intercept: 5.14






The results obtained indicate the following vapor pressure relationship:
Log10 (Vp (Pa)) = -3.37 x 103/temp(K) + 8.54


The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.77.


 


Run 10


Table 6 - Vapour Pressure Data


















































































































Temperature (°C)



Temperature (K)



Reciprocal Temperature (K-1)



Mass Difference (µg)



Mass Difference (kg)



Vapour Pressure (Pa)



Log10 Vp



36



309.15



0.003235



2.78



2.78e-09



0.00386



-2.41341



37



310.15



0.003224



2.47



2.47e-09



0.00343



-2.46471



38



311.15



0.003214



4.33



4.33e-09



0.00601



-2.22113



39



312.15



0.003204



4.54



4.54e-09



0.00630



-2.20066



40



313.15



0.003193



3.26



3.26e-09



0.00453



-2.34390



41



314.15



0.003183



4.99



4.99e-09



0.00693



-2.15927



42



315.15



0.003173



4.05



4.05e-09



0.00562



-2.25026



43



316.15



0.003163



3.87



3.87e-09



0.00537



-2.27003



44



317.15



0.003153



3.99



3.99e-09



0.00554



-2.25649



45



318.15



0.003143



4.52



4.52e-09



0.00627



-2.0273



46



319.15



0.003133



4.75



4.75e-09



0.00659



-2.18111





A plot of Log10 (vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 10 gives the following statistical data using an unweighted least squares treatment.






Slope: -1.84 x 103
Standard error in slope: 751






Intercept: 3.59
Standard error in intercept: 2.39






The results obtained indicate the following vapor pressure relationship:
Log10 (Vp (Pa)) = -1.84 x 103/temp(K) + 3.59


The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.58.








 




The values of vapour pressure at 25°C, extrapolated from each graph, are summarised in the following table:


Table 7: Summary of Vapour Pressure Data






































Run



Log10[Vp(25°C)]



3



-2.41



4



-2.55



5



-2.77



8



-2.67



9



-2.77



10



-2.58



Mean



-2.63







 




















Conclusions:
The vapour pressure of the test item has been determined to be 0.00237 Pa at 25 °C.
Executive summary:



The vapor pressure of the test item has been determined to be 2.37 x 10-3 Pa at 25 °C, using the vapor pressure balance method, designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008 and Method 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.




Description of key information

2.37 x 10-3 Pa at 25°C; Ford, A. J. (2021)

Key value for chemical safety assessment

Vapour pressure:
0.002 Pa
at the temperature of:
25 °C

Additional information