Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 270-414-6 | CAS number: 68439-70-3
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Short-term toxicity to aquatic invertebrates
Administrative data
Link to relevant study record(s)
Description of key information
For four category members six reliable studies (reliability category 1 or 2) are available with EC50 (48 h) values between 930 µg/L (C10 DMA; RL 1) and 56 µg/L (C12-14 DMA; RL 1). No obvious relationship between chain length and toxicity exists.
Key value for chemical safety assessment
Fresh water invertebrates
Fresh water invertebrates
- Effect concentration:
- 56 µg/L
Additional information
Dimethyl Alkyl Amines (DMA), which are cationic surfactants at pH relevant in the environment, exhibit strongsorption to test organisms and walls of test vessels due to a combination of ionic and hydrophobic interaction. The sorption coefficient was found to be concentration dependent. Due to these properties the test items are difficult to test in synthetic water and results from such tests depend on the test settings applied.In river water,which contains particulate as well as dissolved organic carbon,Dimethyl Alkyl Amines (DMA) are either dissolved in water or adsorbed to dissolved and particulate matter. Thisreduces the difficulties encountered in tests with synthetic water caused by the high adsorption potential (adsorption losses due to settling on surfaces). In general, the adsorbed fraction of DMA is difficult to extract from the test system, which normally leads to low analytical recoveries especially in the old media, while initially measured concentrations (fresh media) are generally within +/- 20% as recommended by the guidelines. Due to the short exposure periods applied in these tests (semi-static design) these low recoveries cannot be explained by biodegradation.No or negligible sorption to glass ware occurs under these conditions which was confirmed by measurements. This ensures reliable as well as reproducible results andmeans that the test substance is present in the test system and therefore available for exposure (dissolved in water and adsorbed, also called bulk). This so called Bulk Approach is described by ECETOC (2003).Consequently, nominal concentrations were used for these tests instead of measured ones.
Therefore, reliable (reliability category 1) tests with river water as dilution water were newly performed (NOACK, 2012) for four category members with different chain lengths (C10 DMA, C12-14 DMA, C16 DMA and C16-18 DMA). These tests were of semi-static test design (renewal after 24 hours) and involved analytical determination of test item adsorbed to glass walls as well as initial and final test item concentration in test water and are regarded to be of higher reliability and relevance than the tests performed with synthetic dilution water.Natural river water from river “Innerste” (Lower Saxony) was used as dilution water in these tests. This river has been chosen due to its properties representing typical conditions of a German medium sized river. The concentration of suspended matter measured in the river water was in a range of 14.0 to 15.6 mg/L, the non-purgable organic carbon concentration was between 3.2 and 3.3 mg/L.
Sometimes mitigating effects are observed for river water tests compared to tests involving synthetic water. This was not the case for results on acute invertebrate toxicity of DMA. Where reliable studies for both test types are available for comparison (C10, C12-14) results are very close to one another and EC50 (48 h) observed in the river water test was even lower than the one involving synthetic water for C12-14 DMA (56 µg/L and 83 µg/L, respectively).
Determined EC50 (48 h, immobility) is highest for C10 DMA (930 µg/L; river water; RL 1), intermediate for C16-18 DMA (190 µg/L; river water; RL 1) and lowest for C12-14 and C16 DMA (56 µg/L and 67 µg/L, respectively; river water; RL 1). Thus judging from reliable experimental test results, while there is no evident relationship between chain length and toxicity, members of the DMA category are to be regarded as acutely toxic to aquatic invertebratesInformation on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.