Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 949-117-7 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Vapour pressure
Administrative data
Link to relevant study record(s)
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite version 4.11
2. MODEL (incl. version number)
Mpbpwin v. 1.43
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.
- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Temp.:
- 25 °C
- Vapour pressure:
- 0.011 Pa
- Remarks on result:
- other: Modified Grain method
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite version 4.11
2. MODEL (incl. version number)
Mpbpwin v. 1.43
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.
- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Temp.:
- 25 °C
- Vapour pressure:
- 0 Pa
- Remarks on result:
- other: Modified Grain method
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite version 4.11
2. MODEL (incl. version number)
Mpbpwin v. 1.43
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.
- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Temp.:
- 25 °C
- Vapour pressure:
- 0 Pa
- Remarks on result:
- other: Modified Grain method
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite version 4.11
2. MODEL (incl. version number)
Mpbpwin v. 1.43
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.
- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Temp.:
- 25 °C
- Vapour pressure:
- 0 Pa
- Remarks on result:
- other: Modified Grain method
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite version 4.11
2. MODEL (incl. version number)
Mpbpwin v. 1.43
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.
- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Temp.:
- 25 °C
- Vapour pressure:
- 0 Pa
- Remarks on result:
- other: Modified Grain method
- Endpoint:
- vapour pressure
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
- Justification for type of information:
- 1. SOFTWARE
EPI Suite version 4.11
2. MODEL (incl. version number)
Mpbpwin v. 1.43
3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See “Test material information”
4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached information on the model provided by the developer. Further information on the OECD criteria as outlined by the applicant is provided below under "Any other information of materials and methods incl. tables"
5. APPLICABILITY DOMAIN
See attached information and information as provided in "Any other information on results incl. tables".
6. ADEQUACY OF THE RESULT
See assessment of adequacy as outlined in the "Overall remarks, attachments" section. - Qualifier:
- according to guideline
- Guideline:
- other: REACH Guidance on QSARs R.6
- Principles of method if other than guideline:
- - Software tool(s) used including version: EPI Suite v4.11
- Model(s) used: Mpbpwin Model version 1.43
The model estimates vapour pressure by three different methods:
- the Antoine equation (Lyman WJ, Reehl WF and Rosenblatt DH. 1990. Handbook of Chemical Property Estimation Methods. Washington, DC: American Chemical Society);
- the Modified Grain Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc., Chapter 2);
- the Mackay Method (Lyman WJ. 1985. In: Environmental Exposure From Chemicals. Volume I. Neely WB and Blau GE (eds). Boca Raton, FL: CRC Press, Inc.).
MPBPWIN selects a “suggested” vapour pressure: the modified Grain for solids and the average of the Antoine and the modified Grain for liquids and gases.
A dataset of 3037 compounds with experimentally determined vapour pressure values has been used to evaluate the model (using the “suggested” values as outcome), giving a correlation coefficient of 0.914. The evaluation clearly shows that the model reliability decrease for vapour pressure below 0.0001 Pa.
The dataset contains 1642 compounds with available experimental Boiling points and Melting points. The correlation coefficient evaluated on this subset (0.949) indicates that VP estimates are more accurate when experimental BP and MP are available.
- Model description: see field 'Justification for type of information', 'Attached justification' and 'any other information on Material and methods'
- Justification of QSAR prediction: see field 'Justification for type of information', 'Attached justification' and/or 'overall remarks' - GLP compliance:
- no
- Type of method:
- other: QSAR
- Temp.:
- 25 °C
- Vapour pressure:
- 0 Pa
- Remarks on result:
- other: Modified Grain method
Referenceopen allclose all
QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”
QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”
QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”
QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”
QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”
QSAR result; transition/decomposition is not specified/reported. For detailed description of the model and its applicability, see "Any other information on materials and methods incl. tables”
Description of key information
Vapour pressure values of the individual components
Glycerol: 0.0106 Pa
Diglycerol: 0.000431 Pa
Triglycerol: 1.37E-6 Pa
Diglycerol Monoester: 1.88E-11 Pa
Triglycerol Monoester: 3.69E-14 Pa
Sodium Ricinoleic: 6.93E-12 Pa
The vapour pressure values range from 3.69E-14 to 0.0106 Pa.
Overall conclusion
With the exception of glycerol, all five of the other components have low volatility (vapour pressure values < 0.01 Pa). Since these five components comprise > 90 w/w% of the overall composition, and glycerol itself is on the threshold of 0.01 Pa (0.0106 Pa) the vapour pressure of the substance taken as whole is < 0.01 Pa, and the substance has low volatility.
Key value for chemical safety assessment
Additional information
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.