Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 252-652-2 | CAS number: 35642-64-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to microorganisms
Administrative data
Link to relevant study record(s)
- Endpoint:
- toxicity to microorganisms
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- Data is from OECD QSAR toolbox version 3.4 and the QMRF report has been attached
- Qualifier:
- according to guideline
- Guideline:
- other: Estimated data
- Principles of method if other than guideline:
- Prediction was done according to the OECD QSAR toolbox version 3.4.
- GLP compliance:
- not specified
- Specific details on test material used for the study:
- Name of the test chemical: 7-[[2-[(aminocarbonyl)amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl]azo]naphthalene-1,3,6-trisulphonic acid
Molecular formula: C20H16ClN9O10S3
Molecular weight: 674.0504 g/mol
Smiles Notation: S(=O)(=O)(c1c(/N=N/c2c(NC(=O)N)cc(Nc3nc(nc(n3)Cl)N)cc2)cc2c(S(=O)(=O)O)cc(S(=O)(=O)O)cc2c1)O
InChI:1S/C20H16ClN9O10S3/c21-17-26-18(22)28-20(27-17)24-9-1-2-12(13(5-9)25-19(23)31)29-30-14-7-11-8(4-16(14)43(38,39)40)3-10(41(32,33)34)6-15(11)42(35,36)37/h1-7H,(H3,23,25,31)(H,32,33,34)(H,35,36,37)(H,38,39,40)(H3,22,24,26,27,28)/b30-29+
Substance Type: Organic
Physical State: solid - Analytical monitoring:
- not specified
- Vehicle:
- not specified
- Test organisms (species):
- Tetrahymena pyriformis
- Test type:
- static
- Water media type:
- freshwater
- Total exposure duration:
- 48 h
- Reference substance (positive control):
- not specified
- Key result
- Duration:
- 48 h
- Dose descriptor:
- other: IGC50
- Effect conc.:
- 1 508.953 mg/L
- Nominal / measured:
- estimated
- Conc. based on:
- not specified
- Basis for effect:
- other: Growth
- Remarks on result:
- other: Other details not known
- Details on results:
- No data available
- Results with reference substance (positive control):
- No data available
- Reported statistics and error estimates:
- No data available
- Validity criteria fulfilled:
- not specified
- Conclusions:
- Based on the growth inhibition the IGC50 value was estimated to be 1508.952 mg/l for Tetrahymena pyriformis for 48 hrs of exposure duration.
- Executive summary:
Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the six closest read across substances, the toxicity on Tetrahymena pyriformis was predicted for 7-[[2-[(aminocarbonyl)amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl] azo]naphthalene -1,3,6-trisulphonic acid (CAS:35642-64-9). IGC50 value was estimated to be 1508.952 mg/l for Tetrahymena pyriformis for 48 hrs of duration.
Based on this value it can be concluded that the substance 7-[[2-[(aminocarbonyl) amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl] azo]naphthalene -1,3,6-trisulphonic acid is considered to not toxic to microorganisms.
Reference
The
prediction was based on dataset comprised from the following
descriptors: IGC50
Estimation method: Takes average value from the 6 nearest neighbours
Domain logical expression:Result: In Domain
((((((("a"
or "b" or "c" or "d" or "e" or "f" )
and "g" )
and "h" )
and "i" )
and ("j"
and (
not "k")
)
)
and ("l"
and (
not "m")
)
)
and ("n"
and "o" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Naphthalene sulfonic acids,
condensates by OECD HPV Chemical Categories
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as Substituted Triazines (Acute
toxicity) by US-EPA New Chemical Categories
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as Acid moiety AND Anilines
(Unhindered) AND Substituted Ureas AND Triazines, Aromatic by Aquatic
toxicity classification by ECOSAR
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as Acid moiety OR Anilines
(Unhindered) OR Substituted Ureas OR Triazines, Aromatic by Aquatic
toxicity classification by ECOSAR ONLY
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as SNAr OR SNAr >> Nucleophilic
aromatic substitution OR SNAr >> Nucleophilic aromatic substitution >>
Halo-triazines by Protein binding by OECD ONLY
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as SNAr OR SNAr >> Nucleophilic
aromatic substitution on activated aryl and heteroaryl compounds OR SNAr
>> Nucleophilic aromatic substitution on activated aryl and heteroaryl
compounds >> Activated aryl and heteroaryl compounds by Protein binding
by OASIS v1.4 ONLY
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as Class 5 (Not possible to
classify according to these rules) by Acute aquatic toxicity
classification by Verhaar (Modified) ONLY
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as Reactive unspecified by Acute
aquatic toxicity MOA by OASIS ONLY
Domain
logical expression index: "i"
Similarity
boundary:Target:
NC(=O)Nc1cc(Nc2nc(N)nc(Cl)n2)ccc1N=Nc1cc2c(cc1S(O)(=O)=O)cc(S(O)(=O)=O)cc2S(O)(=O)=O
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization
Domain
logical expression index: "j"
Referential
boundary: The
target chemical should be classified as Aromatic heterocyclic halide AND
Aryl AND Aryl halide AND Azo AND Fused carbocyclic aromatic AND
Naphtalene AND Sulfonic acid AND Triazine AND Urea derivatives by
Organic Functional groups
Domain
logical expression index: "k"
Referential
boundary: The
target chemical should be classified as Acridine by Organic Functional
groups
Domain
logical expression index: "l"
Referential
boundary: The
target chemical should be classified as Aromatic heterocyclic halide AND
Aryl AND Aryl halide AND Azo AND Fused carbocyclic aromatic AND
Naphtalene AND Sulfonic acid AND Triazine AND Urea derivatives by
Organic Functional groups
Domain
logical expression index: "m"
Referential
boundary: The
target chemical should be classified as Nitrobenzene by Organic
Functional groups
Domain
logical expression index: "n"
Parametric
boundary:The
target chemical should have a value of Koc (Log Kow) which is >= 3.07
L/kg
Domain
logical expression index: "o"
Parametric
boundary:The
target chemical should have a value of Koc (Log Kow) which is <= 45.6
L/kg
Description of key information
Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the six closest read across substances, the toxicity on Tetrahymena pyriformis was predicted for 7-[[2-[(aminocarbonyl)amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl] azo]naphthalene -1,3,6-trisulphonic acid (CAS:35642-64-9). IGC50 value was estimated to be 1508.952 mg/l for Tetrahymena pyriformis for 48 hrs of duration.
Based on this value it can be concluded that the substance 7-[[2-[(aminocarbonyl) amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl] azo]naphthalene -1,3,6-trisulphonic acid is considered to not toxic to microorganisms.
Key value for chemical safety assessment
- EC50 for microorganisms:
- 1 508.9 mg/L
Additional information
Based on the various experimental data for the target chemical and read across chemicals study have been reviewed to determine the toxic nature of target chemical 7-[[2-[(aminocarbonyl)amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl]azo]naphthalene-1,3,6-trisulphonic acid (35642 -64 -9). The studies are as mentioned below:
In the first weight of evidence study for the target chemical (35642 -64 -9) from OECD QSAR toolbox version 3.4 with log kow as the primary descriptor prediction was done and considering the six closest read across substances, the toxicity on Tetrahymena pyriformis was predicted for 7-[[2-[(aminocarbonyl)amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl] azo]naphthalene -1,3,6-trisulphonic acid (CAS:35642-64-9). IGC50 value was estimated to be 1508.952 mg/l for Tetrahymena pyriformis for 48 hrs of duration. Based on this value it can be concluded that the substance 7-[[2-[(aminocarbonyl) amino]-4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]phenyl] azo]naphthalene -1,3,6-trisulphonic acid is considered to not toxic to microorganisms.
In the second study for read across chemical (915-67-3) Biotechnology Letters, 2002. The Microtox acute toxicity assay was performed by using a modified strain of Vibrio fischeri. Frozen samples were brought to room temperature, and centrifuged. The pH of the samples was adjusted where necessary to 6 by adding 0.5 ml 0.58 M KH2 PO4 and 70μl 1 M NaOH. Colour correction was done at 490 nm. The Microtox acute toxicity assay was performed in a Microtox 500 Analyzer on samples before and after decoloration according to the test protocols defined by the manufacturer From eight serial dilutions, the percent concentration to decrease 20% of the luminescence of a modified strain of Vibrio fischeri (EC20) after 5 min incubation was calculated with the Microtox data analysis program [Microtox Omni Software (1999) Azur Environmental, Newark, Del.]. A solution of 1 g/l ZnSO4·7H2O was used as the positive control and 1 g/l glucose as the negative control. Each EC20 reported is the average of triplicate analysis. The concentration to decrease 50% of the bacterial luminescence in the Microtox acute assay (EC50) is normally reported. However, in most of these studies, the EC50 before or after decoloration was greater than 100% indicating that there was no toxicity or toxicity change. To better evaluate whether the decoloration process affected toxicity, the dilution required to decrease 20% of the bacterial luminescence relative to the control (EC20) was reported instead. The following rating was adapted from Coleman & Qureshi (1985) – EC20: >100%=nontoxic;
>75–100%=slightly non-toxic;
>50–75%=toxic;
>25–50%=moderately toxic;
<25% very toxic. The toxicity of 100mg/l of Amaranth determined in terms of EC20 (% dilution) was 44.6 ± 11.6.
Similarly in the third weight of evidence study for the same read across chemical from (Indian J Microbiol 2011). This investigation was aimed at identifying the effects of the Amaranth dye and its degradation products on microbial growth. Amaranth dye was purchased from Hi-media Laboratories Pvt. Ltd., Mumbai, India. Aspergillus ochraceus NCIM 1146 was obtained from National Chemical Laboratory, Pune, India. E. coli MTCC 452, B. subtilis MTCC 6910 and Penicillium ochrochloron MTCC 517 were obtained from Microbial Type Culture Collection and Gene Bank (MTCC), Institute of Microbial Technology, Chandigarh, India. It was regularly maintained and preserved at 4°C on nutrient agar slants contained in (g/l); bacteriological peptone 10.0, beef extract 10.0 and NaCl 5.0 Microbial toxicity of control dye amaranth and metabolites obtained after its decolorization (final concentration 1,000 ppm) was carried out in relation to E. coli, Bacillus substilis, Aspergillus ochraceus and Penicillium ochrochloron MTCC 517 and zone of inhibition (diameter in mm) was recorded. The diameter of the discs used was 10mm. Amaranth and its degradation products were not toxic to Aspergillus ochraceus and Penicillium ochrochloron MTCC 517 at 1,000 ppm concentration. Amaranth inhibited growth of E. coli and Bacillus substilis.
Similarly in the fourth study for the read across chemical (915-67-3) (from, TOXICOLOGY AND APPLIED PHARMACOLOGY, 1977). The death of Paramecium caudatum (PC), a unicellular animal, can be observed more readily and in far less time than that of small animals. Hence a bioassay was conducted to study the toxic effect of Amaranth. Paramecium Caudatum was maintained at 22°C on 0.15 % dried lettuce infusion and fed with Aerobacter aerogenes. Amaranth was tested in 0.1% and 1% concentration. The test concentrations were put in a hollow slide glass, and an equal volume of 0.04 M phosphate buffer, pH 7.0, was added. After 5 to 10 test organisms were added, their survival times were measured microscopically. Thirty to forty test organisms for each concentration were tested by the same method, and the mean survival time and the death rate were calculated. The survival time was defined as the time required until death was observed for each concentration. Death was assumed to have occurred when there was no movement. The death rate was defined as the percentage of deaths observed during 20 minutes. The mean survival time (in sec) of test organism Paramecium caudatum was determined to be 695 seconds. The death rate of the test organism at 10000mg/l was 77.4%. Therefore the Effective concentration causing more than 50% death of Paramecium caudatum was reported as 10000 mg/l.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.