Registration Dossier
Registration Dossier
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 252-652-2 | CAS number: 35642-64-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data

Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl} diazen-1-yl] naphthalene-1,3,6 -trisulfonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene- 1,3,6- trisulfonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to be not toxic as per the criteria mentioned in CLP regulation.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- Data is from OECD QSAR Tolbox version 3.3 and the supporting QMRF report has been attached
- Qualifier:
- according to guideline
- Guideline:
- other: Refer below principle
- Principles of method if other than guideline:
- Prediction is done using OECD QSAR Tolbox version 3.3, 2017
- GLP compliance:
- not specified
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- - Name of the test material: 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid
- IUPAC name: 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid
- Molecular formula: C20H16ClN9O10S3
- Molecular weight: 674.0504 g/mol
- Substance type: Organic
- Smiles: S(=O)(=O)(c1c(/N=N/c2c(NC(=O)N)cc(Nc3nc(nc(n3)Cl)N)cc2)cc2c(S(=O)(=O)O)cc(S(=O)(=O)O)cc2c1)O - Target gene:
- Histidine
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not specified
- Cytokinesis block (if used):
- No data
- Metabolic activation:
- with
- Metabolic activation system:
- S9 metabolic activation system
- Test concentrations with justification for top dose:
- No data
- Vehicle / solvent:
- No data
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- not specified
- True negative controls:
- not specified
- Positive controls:
- not specified
- Positive control substance:
- not specified
- Details on test system and experimental conditions:
- No data
- Rationale for test conditions:
- No data
- Evaluation criteria:
- Prediction is done considering a dose dependent increase in the number of revertants/plate
- Statistics:
- No data
- Species / strain:
- S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- with
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- not specified
- Additional information on results:
- No data
- Remarks on result:
- no mutagenic potential (based on QSAR/QSPR prediction)
- Conclusions:
- 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
- Executive summary:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6 -trisulfonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to be not toxic as per the criteria mentioned in CLP regulation.
Reference
The
prediction was based on dataset comprised from the following
descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 8 nearest neighbours
Domain logical expression:Result: In Domain
((((((("a"
or "b" or "c" or "d" or "e" or "f" )
and ("g"
and (
not "h")
)
)
and "i" )
and "j" )
and "k" )
and ("l"
and (
not "m")
)
)
and ("n"
and "o" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Naphthalene sulfonic acids,
condensates by OECD HPV Chemical Categories
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as Substituted Triazines (Acute
toxicity) by US-EPA New Chemical Categories
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion
formation AND SN1 >> Nitrenium Ion formation >> Aromatic phenylureas by
DNA binding by OECD
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as SNAr AND SNAr >> Nucleophilic
aromatic substitution on activated aryl and heteroaryl compounds AND
SNAr >> Nucleophilic aromatic substitution on activated aryl and
heteroaryl compounds >> Activated aryl and heteroaryl compounds by
Protein binding by OASIS v1.3
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as SNAr AND SNAr >> Nucleophilic
aromatic substitution AND SNAr >> Nucleophilic aromatic substitution >>
Halo-triazines by Protein binding by OECD
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as Acid moiety OR Anilines
(Unhindered) OR Substituted Ureas OR Triazines, Aromatic by Aquatic
toxicity classification by ECOSAR ONLY
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OASIS v.1.3
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as AN2 OR AN2 >> Michael-type
addition, quinoid structures OR AN2 >> Michael-type addition, quinoid
structures >> Quinones OR AN2 >> Thioacylation via nucleophilic addition
after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via
nucleophilic addition after cysteine-mediated thioketene formation >>
Haloalkenes with Electron-Withdrawing Groups OR Non-covalent interaction
OR Non-covalent interaction >> DNA intercalation OR Non-covalent
interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and
Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation
>> Amino Anthraquinones OR Non-covalent interaction >> DNA intercalation
>> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA
intercalation >> DNA Intercalators with Carboxamide Side Chain OR
Non-covalent interaction >> DNA intercalation >> Fused-Ring
Nitroaromatics OR Non-covalent interaction >> DNA intercalation >>
Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA
intercalation >> Quinones OR Non-specific OR Non-specific >>
Incorporation into DNA/RNA, due to structural analogy with nucleoside
bases OR Non-specific >> Incorporation into DNA/RNA, due to
structural analogy with nucleoside bases >> Specific Imine and
Thione Derivatives OR Radical OR Radical >> Generation of ROS by
glutathione depletion (indirect) OR Radical >> Generation of ROS by
glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR
Radical >> Radical mechanism by ROS formation OR Radical >> Radical
mechanism by ROS formation >> Acridone, Thioxanthone, Xanthone and
Phenazine Derivatives OR Radical >> Radical mechanism by ROS formation
>> Polynitroarenes OR Radical >> Radical mechanism via ROS formation
(indirect) OR Radical >> Radical mechanism via ROS formation (indirect)
>> Amino Anthraquinones OR Radical >> Radical mechanism via ROS
formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical
mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR
Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring
Primary Aromatic Amines OR Radical >> Radical mechanism via ROS
formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism
via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >>
Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other
Active Groups OR Radical >> Radical mechanism via ROS formation
(indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR
Radical >> Radical mechanism via ROS formation (indirect) >>
p-Aminobiphenyl Analogs OR Radical >> Radical mechanism via ROS
formation (indirect) >> Quinones OR Radical >> Radical mechanism via ROS
formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines
OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific
Imine and Thione Derivatives OR SN1 OR SN1 >> Alkylation after
metabolically formed carbenium ion species OR SN1 >> Alkylation after
metabolically formed carbenium ion species >> Polycyclic Aromatic
Hydrocarbon Derivatives OR SN1 >> Nucleophilic attack after diazonium or
carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or
carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1
>> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >>
Nucleophilic attack after metabolic nitrenium ion formation >> Amino
Anthraquinones OR SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >>
Nucleophilic attack after metabolic nitrenium ion formation >>
p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack after metabolic
nitrenium ion formation >> Single-Ring Substituted Primary Aromatic
Amines OR SN1 >> Nucleophilic attack after reduction and nitrenium ion
formation OR SN1 >> Nucleophilic attack after reduction and nitrenium
ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic
attack after reduction and nitrenium ion formation >> Fused-Ring
Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack
after reduction and nitrenium ion formation >> Nitroaniline Derivatives
OR SN1 >> Nucleophilic attack after reduction and nitrenium ion
formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic
attack after reduction and nitrenium ion formation >> Nitrobiphenyls and
Bridged Nitrobiphenyls OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and
Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic
substitution on diazonium ions OR SN1 >> Nucleophilic substitution on
diazonium ions >> Specific Imine and Thione Derivatives OR SN2 OR SN2 >>
Alkylation, direct acting epoxides and related after P450-mediated
metabolic activation OR SN2 >> Alkylation, direct acting epoxides and
related after P450-mediated metabolic activation >> Haloalkenes with
Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides
and related after P450-mediated metabolic activation >> Polycyclic
Aromatic Hydrocarbon Derivatives OR SN2 >> Alkylation, nucleophilic
substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic
substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >>
Direct acting epoxides formed after metabolic activation OR SN2 >>
Direct acting epoxides formed after metabolic activation >> Quinoline
Derivatives OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >>
Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >>
Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic
substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR
SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated
carbon atom >> Quinoline Derivatives OR SN2 >> SN2 attack on activated
carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or
Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS
v.1.3
Domain
logical expression index: "i"
Referential
boundary: The
target chemical should be classified as No superfragment by
Superfragments ONLY
Domain
logical expression index: "j"
Referential
boundary: The
target chemical should be classified as Not bioavailable by Lipinski
Rule Oasis ONLY
Domain
logical expression index: "k"
Similarity
boundary:Target:
NC(=O)Nc1cc(Nc2nc(N)nc(Cl)n2)ccc1N=Nc1cc2c(cc1S(O)(=O)=O)cc(S(O)(=O)=O)cc2S(O)(=O)=O
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization
Domain
logical expression index: "l"
Referential
boundary: The
target chemical should be classified as (!Undefined)Group All Lipid
Solubility < 0.01 g/kg AND Group All Melting Point > 200 C by Skin
irritation/corrosion Exclusion rules by BfR
Domain
logical expression index: "m"
Referential
boundary: The
target chemical should be classified as (!Undefined)Group CNS Surface
Tension > 62 mN/m OR Group All log Kow < -3.1 OR Group CNS Melting Point
> 120 C OR Group CNS Melting Point > 50 C OR Group CNS Molecular Weight
> 620 g/mol by Skin irritation/corrosion Exclusion rules by BfR
Domain
logical expression index: "n"
Parametric
boundary:The
target chemical should have a value of log Kow which is >= -2.93
Domain
logical expression index: "o"
Parametric
boundary:The
target chemical should have a value of log Kow which is <= 4.38
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Gene mutation in vitro:
Prediction model based estimation for the target chemical and data from read across chemicals have been reviewed to determine the mutagenic nature of
7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6 -trisulfonic acid. The studies are as mentioned below:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6 -trisulfonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity was predicted for 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid using the battery approach from Danish QSAR database (2017). The study assumed the use of Salmonella typhimurium bacteria in the Ames test. The end point for gene mutation has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. Gene mutation toxicity study as predicted by Danish QSAR for 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acidis negative and hence the chemical is predicted to not classify as a gene mutant in vitro.
The ability of 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid to induce chromosomal aberration was predicted using Chinese hamster ovary (CHO) cells using Danish QSAR database (2017). The end point for chromosome aberrations has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl] naphthalene-1,3,6-trisulfonic acid does not induce chromosome aberrations in Chinese hamster ovary (CHO) cells and hence is predicted to not classify as a gene mutant in vitro.
In a study for structurally and functionally similar read across chemical by Ishidate et al (Food and Chemical Toxicology, 1984), Gene mutation toxicity study was performed to determine the mutagenic nature of Food red 102 (RA CAS no 2611 -82 -7). The study was performed using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 with and without S9 metabolic activation system. The test was performed as per the preincubation assay at six different concentrations with 5 mg/plate being the maximum concentration. The chemical was dissolved in phosphate buffer. Preincubation was performed for 20 mins and the exposure duration was for 48 hrs. The result was considered positive if the number of colonies found was twice the number in the control (exposed to the appropriate solvent or untreated). Food red 102 did not induce a doubling of revertant colonies over the control using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
In the same study by Ishidate et al, Chromosomal aberration study was performed to determine the mutagenic nature of structurally and functionally similar read across chemical Food red 102 (RA CAS no 2611 -82 -7). The cells were exposed to the test material at three different doses with 1 mg/mL being the maximum concentration for 24 and 48 hr. Colcemid (final concn 0.2µg/ml) was added to the culture 2 hr before cell harvesting. The cells were then trypsinized and suspended in a hypotonic KCI solution (0.075 M) for 13 min at room temperature. After centrifugation the cells were fixed with acetic acid-methanol (1:3, v/v) and spread on clean glass slides. After air-drying, the slides were stained with Giemsa solution for 12-15 min. A hundred well-spread metaphases were observed under the microscope. In the present studies, no metabolic activation systems were applied. The incidence of polyploid cells as well as of cells with structural chromosomal aberrations such as chromatid or chromosome gaps, breaks, exchanges, ring formations, fragmentations and others, was recorded on each culture plate. Untreated cells and solvent-treated cells served as negative controls, in which the incidence of aberrations was usually less than 3.0%. The results were considered to be negative if the incidence was less than 4.9%, equivocal if it was between 5.0 and 9.9%, and positive if it was more than 10.0%. Food red 102 did not induce chromosomal aberration in chinese hamster fibroblast cell line CHL and hence is not likely to classify as a gene mutant in vitro.
In another study performed by Zeiger et al (Environmental and Molecular Mutagenesis, 1987), Salmonella/microsome test in the absence of exogenous metabolic activation and in the presence of liver S-9 from Aroclor-induced male Sprague-Dawley rats and Syrian hamsters was performed to evaluate the mutagenic nature of the read across chemical Direct Red 89 (RA CAS no 6358 -29 -8) using S. typhimurium tester strains TA1535, TA97, TA98 and TA100. The study was performed as per the preincubation assay by preincubation for 20 mins. The test compound was used at a dosage level of 0, 100, 333, 1000, 3333 or 10000 µg/plate in the preincubation assay of 48 hrs. Concurrent solvent and positive controls were also included in the study. Direct Red 39 did not induce gene mutation in theS. typhimuriumtester strains TA1535, TA97, TA98 and TA100 in the presence and absence of S9 metabolic activation system and hence is negative for mutation in vitro.
Based on the data available for the target chemical and its read across, 7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl}diazen-1-yl]naphthalene-1,3,6-trisulfonic acid does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant as per the criteria mentioned in CLP regulation.
Justification for classification or non-classification
Based on the data available for the target chemical and its read across,7-[(E)-2-{4-[(4-amino-6-chloro-1,3,5-triazin-2-yl)amino]-2-(carbamoylamino)phenyl} diazen-1 -yl]naphthalene-1,3,6-trisulfonic acid does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant as per the criteria mentioned in CLP regulation.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
