Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Methyl nicotinate. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Methyl nicotinate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR toolbox version 3.3 and the supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: Refer below principle
Principles of method if other than guideline:
Prediction is done using OECD QSAR toolbox version 3.3 and the supporting QMRF report has been attached
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of the test material: Methyl nicotinate
- IUPAC name: Methyl nicotinate
- Molecular formula: C7H7NO2
- Molecular Weight: 137.137 g/mol
- Substance type: Organic
- Smiles: c1(C(OC)=O)cccnc1
Target gene:
Histidne
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
No data
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation system
Test concentrations with justification for top dose:
No data
Vehicle / solvent:
No data
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Positive control substance:
not specified
Details on test system and experimental conditions:
No data
Rationale for test conditions:
No data
Evaluation criteria:
The prediction was done considering a dose dependent increase in the number of revertants/plate
Statistics:
No data
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
No data

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 7 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((((((((("a" or "b" or "c" or "d" or "e" )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and ("j" and ( not "k") )  )  and "l" )  and ("m" and ( not "n") )  )  and ("o" and ( not "p") )  )  and ("q" and ( not "r") )  )  and "s" )  and "t" )  and "u" )  and ("v" and ( not "w") )  )  and ("x" and ( not "y") )  )  and ("z" and "aa" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Esters (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Aryl AND Carboxylic acid ester AND Pyridine by Organic Functional groups

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Aryl AND Carboxylic acid ester AND Overlapping groups AND Pyridine by Organic Functional groups (nested)

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Aliphatic Carbon [CH] AND Aliphatic Carbon [-CH2-] AND Aliphatic Carbon [-CH3] AND Aromatic Carbon [C] AND Aromatic Nitrogen AND Carbonyl, olefinic attach [-C(=O)-] AND Carbonyl, one aromatic attach [-C(=O)-] AND Ester, aliphatic attach [-C(=O)O] AND Miscellaneous sulfide (=S) or oxide (=O) AND Olefinic carbon [=CH- or =C<] AND Pyridine, non fused rings  by Organic functional groups (US EPA)

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as Aromatic compound AND Carbonic acid derivative by Organic functional groups, Norbert Haider (checkmol)

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.3

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Flavonoids OR AN2 >>  Michael-type addition, quinoid structures >> Quinoneimines OR AN2 >>  Michael-type addition, quinoid structures >> Quinones OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> Hydroxamic Acids OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Polarized Haloalkene Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Shiff base formation for aldehydes OR AN2 >> Shiff base formation for aldehydes >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation for aldehydes >> Haloalkane Derivatives with Labile Halogen OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Haloalkenes with Electron-Withdrawing Groups OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Polarized Haloalkene Derivatives OR Michael addition OR Michael addition >> Quinone type compounds OR Michael addition >> Quinone type compounds >> Quinone methides OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Aminoacridine DNA Intercalators OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> Quinones OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical OR Radical >> Generation of reactive oxygen species OR Radical >> Generation of reactive oxygen species >> Thiols OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA OR Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA >> Organic Peroxy Compounds OR Radical >> Radical mechanism by ROS formation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism by ROS formation >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Anthrones OR Radical >> Radical mechanism via ROS formation (indirect) >> C-Nitroso Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Aminobiphenyl Analogs OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR Radical >> ROS formation after GSH depletion OR Radical >> ROS formation after GSH depletion (indirect) OR Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines OR Radical >> ROS formation after GSH depletion >> Quinone methides OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Acyclic Triazenes OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium ion formation OR SN1 >> Nucleophilic attack after nitrenium and/or carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrobiphenyls and Bridged Nitrobiphenyls OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation >> C-Nitroso Compounds OR SN1 >> Nucleophilic substitution on diazonium ions OR SN1 >> Nucleophilic substitution on diazonium ions >> Specific Imine and Thione Derivatives OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion >> N-Acyloxy(Alkoxy) Arenamides OR SN1 >> SN1 reaction at nitrogen-atom bound to a good leaving group or on  nitrenium ion >> N-Aryl-N-Acetoxy(Benzoyloxy) Acetamides OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Hydroxamic Acids OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group  OR SN2 >> Acylation involving a leaving group  >> Geminal Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group  >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after cyclization OR SN2 >> Alkylation, direct acting epoxides and related after cyclization >> Nitrogen Mustards OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Haloalkenes with Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkane Derivatives with Labile Halogen OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct acylation involving a leaving group OR SN2 >> Direct acylation involving a leaving group >> Acyl Halides OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at Nitrogen Atom OR SN2 >> SN2 at Nitrogen Atom >> N-acetoxyamines OR SN2 >> SN2 at sp3 and activated sp2 carbon atom OR SN2 >> SN2 at sp3 and activated sp2 carbon atom >> Polarized Haloalkene Derivatives OR SN2 >> SN2 at sulfur atom OR SN2 >> SN2 at sulfur atom >> Sulfonyl Halides OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group >> N-Acetoxyamines OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion >> N-Acyloxy(Alkoxy) Arenamides OR SN2 >> SN2 reaction at nitrogen-atom bound to a good leaving group or nitrenium ion >> N-Aryl-N-Acetoxy(Benzoyloxy) Acetamides by DNA binding by OASIS v.1.3

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Isocyanates and Isothiocyanates OR Acylation >> Isocyanates and Isothiocyanates >> Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Benzylamines-Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Formamides OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Sulfonylureas OR Michael addition OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Furans OR Michael addition >> P450 Mediated Activation of Heterocyclic Ring Systems >> Thiophenes-Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> 5-alkoxyindoles OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Methylenedioxyphenyl OR Michael addition >> Polarised Alkenes-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated aldehydes OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated amides OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated ketones OR Michael addition >> Quinones and Quinone-type Chemicals OR Michael addition >> Quinones and Quinone-type Chemicals >> Quinones OR Schiff base formers OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> Ethanolamines (including morpholine) OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> Ethylenediamines (including piperazine) OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes >> Thiazoles OR Schiff base formers >> Direct Acting Schiff Base Formers OR Schiff base formers >> Direct Acting Schiff Base Formers >> Mono aldehydes OR SN1 OR SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >> Allyl benzenes OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Aromatic phenylureas OR SN1 >> Nitrenium Ion formation >> Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Secondary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary (unsaturated) heterocyclic amine  OR SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic azo OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic nitro OR SN1 >> Nitrenium Ion formation >> Unsaturated heterocyclic phenylureas OR SN2 OR SN2 >> P450 Mediated Epoxidation OR SN2 >> P450 Mediated Epoxidation >> Thiophenes-SN2 OR SN2 >> SN2 at an sp3 Carbon atom OR SN2 >> SN2 at an sp3 Carbon atom >> Aliphatic halides by DNA binding by OECD

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as No alert found by Protein binding by OECD

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Direct Acylation Involving a Leaving group OR Acylation >> Direct Acylation Involving a Leaving group >> Acetates OR Acylation >> Direct Acylation Involving a Leaving group >> Anhydrides OR Michael addition OR Michael addition >> Acid imides OR Michael addition >> Acid imides >> Acid imides-MA OR Michael addition >> Polarised Alkenes OR Michael addition >> Polarised Alkenes >> Polarised alkene - cyano OR Michael addition >> Polarised Alkenes >> Polarised alkene - esters OR Michael addition >> Polarised Alkenes >> Polarised alkene - ketones OR Michael addition >> Polarised Alkynes OR Michael addition >> Polarised Alkynes >> Polarised alkyne - ester OR Michael addition >> Quinones and Quinone-type Chemicals OR Michael addition >> Quinones and Quinone-type Chemicals >> Pyranones (and related nitrogen chemicals) OR Schiff Base Formers OR Schiff Base Formers >> Direct Acting Schiff Base Formers OR Schiff Base Formers >> Direct Acting Schiff Base Formers >> Mono-carbonyls OR SN2 OR SN2 >> SN2 reaction at sp3 carbon atom OR SN2 >> SN2 reaction at sp3 carbon atom >> Allyl acetates and related chemicals OR SN2 >> SN2 reaction at sp3 carbon atom >> alpha-Halocarbonyls OR SNAr OR SNAr >> Nucleophilic aromatic substitution OR SNAr >> Nucleophilic aromatic substitution >> Activated halo-benzenes OR SNAr >> Nucleophilic aromatic substitution >> Activated halo-pyridines OR SNAr >> Nucleophilic aromatic substitution >> Halo-pyrimidines by Protein binding by OECD

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Non-Metals by Groups of elements

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Alkali Earth OR Halogens OR Metals OR Transition Metals OR Unknown chemical element by Groups of elements

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Group 14 - Carbon C AND Group 15 - Nitrogen N AND Group 16 - Oxygen O by Chemical elements

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Group 15 - Phosphorus P OR Group 16 - Sulfur S by Chemical elements

Domain logical expression index: "q"

Referential boundary: The target chemical should be classified as Not categorized by Repeated dose (HESS)

Domain logical expression index: "r"

Referential boundary: The target chemical should be classified as 3-Methylcholantrene (Hepatotoxicity) Alert OR Amineptine (Hepatotoxicity) Alert OR Hydrazines (Hepatotoxicity) Rank C OR Oxyphenistain (Hepatotoxicity) Alert OR Phthalate esters (Testicular toxicity) Rank C OR Pirprofen (Hepatotoxicity) Alert OR Valproic acid (Hepatotoxicity) Alert by Repeated dose (HESS)

Domain logical expression index: "s"

Similarity boundary:Target: COC(=O)c1cccnc1
Threshold=30%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "t"

Similarity boundary:Target: COC(=O)c1cccnc1
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "u"

Similarity boundary:Target: COC(=O)c1cccnc1
Threshold=40%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization

Domain logical expression index: "v"

Referential boundary: The target chemical should be classified as No alert found by Protein binding alerts for skin sensitization by OASIS v1.3

Domain logical expression index: "w"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Direct acylation involving a leaving group OR Acylation >> Direct acylation involving a leaving group >> Carbamates  OR Nucleophilic addition OR Nucleophilic addition >> Addition to carbon-hetero double bonds OR Nucleophilic addition >> Addition to carbon-hetero double bonds >> Ketones OR Schiff base formation OR Schiff base formation >> Schiff base formation with carbonyl compounds OR Schiff base formation >> Schiff base formation with carbonyl compounds >> alpha-Ketoesters  by Protein binding alerts for skin sensitization by OASIS v1.3

Domain logical expression index: "x"

Referential boundary: The target chemical should be classified as No alert found by Protein binding alerts for Chromosomal aberration by OASIS v1.1

Domain logical expression index: "y"

Referential boundary: The target chemical should be classified as Ac-SN2 OR Ac-SN2 >> Acylation involving an activated (glucuronidated) carboxamide group OR Ac-SN2 >> Acylation involving an activated (glucuronidated) carboxamide group >> Carboxylic Acid Amines OR Ac-SN2 >> Direct acylation involving a leaving group OR Ac-SN2 >> Direct acylation involving a leaving group >> Carboxylic Acid Amines OR AN2 OR AN2 >> Michael-type addition to quinoid structures OR AN2 >> Michael-type addition to quinoid structures >> Carboxylic Acid Amines by Protein binding alerts for Chromosomal aberration by OASIS v1.1

Domain logical expression index: "z"

Parametric boundary:The target chemical should have a value of log Kow which is >= 0.109

Domain logical expression index: "aa"

Parametric boundary:The target chemical should have a value of log Kow which is <= 0.951

Conclusions:
Methyl nicotinate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Methyl nicotinate. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Methyl nicotinate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

Gene mutation in vitro:

Prediction model based estimation and data from read across chemicals was reviewed to determine the mutagenic nature of methyl nicotinate. The studies are as mentioned below:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Methyl nicotinate (CAS no 93 -60 -7). The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Methyl nicotinate was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.

Gene mutation toxicity was predicted for methyl nicotinate (CAS no 93 -60 -7) using the battery approach from Danish QSAR database (2017). The study assumed the use of Salmonella typhimurium bacteria in the Ames test. The end point for gene mutation has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. Methyl nicotinate was assumed to not induce mutation in Salmonella typhimurium by the Ames assay performed and hence the chemical is predicted to not classify as a gene mutant in vitro.

In another study for two structurally and functioctionally similar read across chemical, Seifried et al (Chem. Res. Toxicol., 2006) performed Ames mutagenicity test for urocanic acid (RA CAS no 104 -98 -3. IUPAC name: 3-(1H-imidazol-4-yl)acrylic acid) and 2- Benzooxazolinone (RA CAS no 59 -49 -4; IUPAC name: 1,3-benzoxazol-2(3H)-one) to evaluate their genetoxic effects when exposed to Salmonella typhimurium strains TA98, TA100, TA1535, TA1537, and TA1538 with dose concentration of 100-10000 µg/plate for urocanic acid and of 33 -10000 µg/plate for 2 -benzooxazolinone in plate incorporation assay. Based on the preliminary study conducted, the test compound was used at a five dose level. The plates were incubated for 48 h at 37±2 °C. Five doses of test chemical, together with the appropriate concurrent solvent and positive controls, were tested in triplicate on each tester strain without metabolic activation and also with activation by induced rat and hamster liver S9 preparations. For a test article to be considered positive, it had to induce at least a doubling (TA98, TA100, and TA1535) in the mean number of revertants per plate of at least one tester strain. This increase in the mean revertants per plate had to be accompanied by a dose response to increasing concentrations of the test chemical. Urocanic acid and 2 -Benzooxazolinone did not induce gene mutation in the Salmonella typhirium strains TA98, TA100, TA1535, TA1537, and TA1538 both in the presence and absence of S9 activation system and hence the chemical is not likely to be a gene mutant.

Gene mutation toxicity study was also performed for other structurally and fuctionally similar read across chemical Picolinic acid (RA CAS no 98 -98 -6; IUPAC name: pyridine-2-carboxylic acid ) using Chinese hamster ovary cells. Aqueous solution of the test chemical at dose levels of 0.0, 0.75, 1.50, 2.25 or 3.00 mM was exposed to 3 X 105Chinese hamster ovary AA8 cells for 48 hrs. 1×106cells were re-seeded in 100mM dishes and that amount was re-seeded every 2 days until day 10 post-treatment. This was followed by seeding of 2.5 X 105cells in quadruplicate in 100mM dishes and incubated with 11g/ml of 6-thioguanine (6-TG) for 7–8 days for mutant selection. The plating efficiency was 86±9%. The doubling time for untreated cells was 13 h. Data are expressed as mutants per 106 surviving cells, calculated from the observed 6-TG-resistant colonies and the 10-day clonogenic values. The experiment was repeated for 5-9 times. Cell survival was determined by colony-forming ability. 2 days after chemical exposure, cells were trypsinized, quantified on a Z1 Coulter Particle Counter and re-seeded at 200 cells per 60mM dish in quadruplicate. After 7–8 days, the dishes were stained with crystal violet and the colony number was counted. Cell survival was calculated as per cent colonies in treated dishes relative to untreated controls. Colony forming ability was determined again after 8 days expression time.For the 3mM Pic dose, the 48 h cell count was lowered to 27%, and cell survival by colony formation was only 6%. CHO cells treated with Pic for 48 h produced a low yet statistically insignificant level of mutations for doses of 0.375–1.5mM and hence the chemical is not likely to classify as a gene mutant in vitro.

Based on the weight of evidence data summarized for the target chemical and its read across chemicals, Methyl nicotinate does not exhibit gene mutation in vitro. Hence, the chemical is not likely to classify as a gene mutant as per the criteria mentioned in CLP regulation.

Justification for classification or non-classification

Based on the weight of evidence data summarized for the target chemical and its read across chemicals, Methyl nicotinate (CAS no 93 -60 -7) does not exhibit gene mutation in vitro. Hence, the chemical is not likely to classify as a gene mutant as per the criteria mentioned in CLP regulation.