Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 931-296-8 | CAS number: 97862-59-4
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Sediment toxicity
Administrative data
Link to relevant study record(s)
- Endpoint:
- sediment toxicity: short-term
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- REPORTING FORMAT FOR THE ANALOGUE APPROACH
see "General Justification for Read-Across" attached to IUCLID section 13
1. HYPOTHESIS FOR THE ANALOGUE APPROACH
Mutual read across from the AAPBs to one another is justified:
a) Based on the information given in section 1, it can be concluded that all AAPBs mentioned above are similar in structure, since they are manufactured from similar resp. identical precursors under similar conditions and all contain the same functional groups. Thus a common mode of action can be assumed.
b) The content of minor constituents in all products are comparable and differ to an irrelevant amount.
c) The only deviation within this group of substances is a minor variety in their fatty acid moiety, which is not expected to have a relevant impact on intrinsic toxic or ecotoxic activity and environmental fate. Potential minor impact on specific endpoints will be discussed in the specific endpoint sections.
The read-across hypothesis is based on structural similarity of target and source substances. Based on the available experimental data, including key physico-chemical properties and data from toxicokinetic, acute toxicity, irritation, sensitisation, genotoxicity and repeated dose toxicity studies, the read-across strategy is supported by a quite similar toxicological profile of all five substances.
The respective data are summarised in the data matrix; robust study summaries are included in the Technical Dossier in the respective sections.
2. SOURCE AND TARGET CHEMICAL(S) (INCLUDING INFORMATION ON PURITY AND IMPURITIES)
see "General Justification for Read-Across" attached to IUCLID section 13
3. ANALOGUE APPROACH JUSTIFICATION
see "General Justification for Read-Across" attached to IUCLID section 13
4. DATA MATRIX
see "General Justification for Read-Across" attached to IUCLID section 13 - Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across: supporting information
- Duration:
- 10 d
- Dose descriptor:
- NOEC
- Effect conc.:
- 14 248.1 mg/kg sediment dw
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- mortality
- Duration:
- 10 d
- Dose descriptor:
- NOEC
- Effect conc.:
- 5 129 mg/kg sediment dw
- Nominal / measured:
- nominal
- Conc. based on:
- act. ingr.
- Basis for effect:
- mortality
- Duration:
- 10 d
- Dose descriptor:
- LC50
- Effect conc.:
- > 14 248.13 mg/kg sediment dw
- Nominal / measured:
- nominal
- Conc. based on:
- test mat.
- Basis for effect:
- mortality
- Duration:
- 10 d
- Dose descriptor:
- LC50
- Effect conc.:
- > 5 129 mg/kg sediment dw
- Nominal / measured:
- nominal
- Conc. based on:
- act. ingr.
- Basis for effect:
- mortality
- Conclusions:
- The 10 d NOEC and LC50 values were determined to be 14248 mg product/kg sediment dw (5129 mg a.i./kg sediment dw) and >14248 mg product/kg sediment dw (>5129 mg a.i./kg sediment dw nominal), respectively.
Reference
Description of key information
Acute toxicity data from a study in marine sediment to the intertidal amphipod Corophium volutator are available. No long-term data are available.
However, a long-term toxicity study on sediment organisms is not justified.
Key value for chemical safety assessment
- EC50 or LC50 for marine water sediment:
- 5 129 mg/kg sediment dw
Additional information
No data on toxicity to sediment dwelling organism are available for C8-18 AAPB. However, adequate and reliable short-term toxicity data on marine sediment organisms are available for the closely related source substance C8-18 and C18 unsatd. AAPB. A justification for read-across is given below.
Freshwater sediment
No data are available for toxicity to freshwater sediment organisms.
Marine sediment
The acute toxicity of Coco AAPB to the intertidal amphipod Corophium volutator was investigated in a study conducted according to OSPARCOM (1995) 'A sediment bioassay using a amphipod Corophium sp.'. Corophium volutator were exposed for 10 d under static conditions to the test item. The 10 d NOEC and LC50 values were determined to be 14248 mg product/kg sediment dw (5129 mg a.i./kg sediment dw) and >14248 mg product/kg sediment dw (>5129 mg a.i./kg sediment dw nominal), respectively.
No data on long-term toxicity to sediment-dwelling organisms are available. In Annex IX of Regulation (EC) No 1907/2006, it is laid down that sediment toxicity tests shall be proposed by the registrant if the chemical safety assessment indicates the need to investigate further the effects on sediment organisms. According to Annex I of this regulation, the chemical safety assessment triggers further action when the substance or the preparation meets the criteria for classification as dangerous according to Directive 67/548/EEC or Directive 1999/45/EC or is assessed to be a PBT or vPvB. The hazard assessment of AAPB reveals neither a need to classify the substance as dangerous to the environment, nor is it a PBT or vPvB substance, nor are there any further indications that the substance may be hazardous to the environment. Furthermore, the substance is not persistent in this compartment, due to physico-chemical properties and the proven rapid biodegradability. Therefore, a long-term toxicity study on sediment organisms is not justified.
Justification for read-across
For details on substance identity and detailed (eco)toxicological profiles, please refer also to the general justification for read-across given at the beginning of the CSR and attached as pdf document to IUCLID section 13.
This read-across approach is justified based on structural similarities. All AAPBs contain the same functional groups. Thus a common mode of action can be assumed.
The only deviation within this group of substances is a minor variety in their fatty acid moiety (chain length and degree of unsaturation), which is not expected to have a relevant impact on intrinsic ecotoxicological properties.
a. Structural similarity and functional groups
Alkylamidopropyl betaines (AAPBs) are – with the exception of C12 AAPB - UVCB substances (Substances of Unknown or Variable composition, Complex reaction products or Biological materials), which are defined as reaction products of natural fatty acids or oils with dimethylaminopropylamine and further reaction with sodium monochloroacetate. AAPBs are amphoteric surfactants, which are characterized by both acidic and alkaline properties.
Their general structure is:
R-C(O)-NH-(CH2)3-(N(CH3)2)+-CH2-C(O)O-
R = fatty acid moiety
The fatty acids have a mixed, slightly varying composition with an even numbered chain length from C8 to C18. Unsaturated C18 may be included. Consequently, the AAPBs differ by their carbon chain length distribution and the degree of unsaturation in the fatty acid moiety. However, Lauramidopropyl betaine (C12 fatty acid derivate) is the major ingredient of all AAPBs covered by this justification as listed in table 1 “Substance identities” of the general justification for read-across.
The substances under evaluation share structural similarities with common functional groups (quaternary amines, amide bonds and carboxymethyl groups), and fatty acid chains with differences in chain length and degree of saturation.
b. Differences
Differences in ecotoxicity of the AAPBs could potentially arise from the following facts:
-Different amounts of different carbon chain lengths (carbon chain length distribution):
Higher amounts of higher chain lengths and corresponding lower amounts of lower chain length could result in a rising average lipophilicity. However, the main component for all AAPBs is C12 AAPB. Relevant effects on ecotoxicity are not to be expected.
- Different amounts of unsaturated fatty ester moieties:
Effects may be expected for e.g. physical state, but are not considered to be of relevance for ecotoxicity.
Sediment toxicity data
Endpoints |
Source substance |
Target substance |
|
C8-18 and C18 unsatd. AAPB |
C8-18 AAPB |
Sediment toxicity |
key (marine).Sediment toxicity.61789-40-0_9.5.1_Marine_10d_Corophium volutator_Rhodia_Mirataine-BET-C-37_2008
OSPARCOM guidelines (1995) A sediment bioassay using a amphipod Corophium sp.
Reliability: 1 (reliable without restriction), GLP |
No data, read-across |
The 10 d LC50 exceeded the highest tested concentration of 5129 mg a.i./kg sediment dw. No effects were observed at any concentration level.
Quality of the experimental data of the analogues:
The available data are adequate and sufficiently reliable to justify the read-across approach.
The study was performed according to OSPARCOM guidelines and was reliable without restrictions (RL1, GLP).
The test materials used in the respective studies represent the source substance as described in the hypothesis in terms of substance identity and minor constituents.
Overall, the study results are adequate for the purpose of classification and labelling and risk assessment.
Conclusion
Based on structural similarities of the target and source substancesas presented above and in more detail in the general justification for read across, it can be concluded that the available data from the source substance C8-18 and C18 unsatd. AAPB are also valid for the target substance C8-18 AAPB.
The 10 d NOEC and LC50 values of C8-18 and C18 unsatd. AAPB to Corophium volutator were determined to be 5129 mg a.i./kg sediment dw (nominal) and >5129 mg a.i./kg sediment dw (nominal), respectively.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.