Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 929-018-5 | CAS number: 129813-66-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Carcinogenicity
Administrative data
Description of key information
The available data and available weight of evidence demonstrate that Hydrocarbons, C10 -C13, n-alkanes, <2% aromatics are highly unlikely to be carcinogenic and are not classifiable as carcinogens.
Key value for chemical safety assessment
Carcinogenicity: via oral route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Carcinogenicity: via inhalation route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Carcinogenicity: via dermal route
Endpoint conclusion
- Endpoint conclusion:
- no study available
Justification for classification or non-classification
These findings do not warrant the classification of Hydrocarbons, C10 -C13, n-alkanes, <2% aromatics as a carcinogen under the Regulation (EC) 1272/2008 on classification, labeling and packaging of substances and mixtures (CLP) or under the Directive 67/518/EEC for dangerous substances and Directive 1999/45/EC for preparations.
Additional information
The available data and available weight of evidence demonstrate that Hydrocarbons, C10 -C13, n-alkanes, <2% aromatics are highly unlikely to be carcinogenic and are not classifiable as carcinogens.
Skin tumor promotion - Evidence of increased tumor promotion was observed in the skin of mice treated with PMA (positive control, 29/30) or with 100% v/v normal paraffin test material (15/30). The skin tumors were predominately of epithelial origin and were papillomas, keratoacanthomas and squamous-cell carcinomas. These tumors were generally well- differentiated with the exception of a few of the squamous-cell carcinomas which were anaplastic with some spindle-cell formations. Early studies that examine structurally analogous test materials, kerosene and jet fuels, were noted to promoter dermal tumors in mice. It was noted that tumor development was associated with moderate to severe skin irritation. Since the materials contain very low or no polycyclic aromatic components (PAC’s), it was suggested that tumor development may have resulted from chronic skin irritation. Therefore, a series of studies were conducted to examine the effect of skin irritation on the tumorigenicity of kerosene. In studies conducted by the American Petroleum Institute (API) and CONCAWE, the absence of skin irritation resulted in no statistically significant differences in tumorigenicity between control animals and animals treated with the test materials (Nessel, Craig S., James J. Freeman, Richard C. Forgash, and Richard H. McKee 1999; CONCAWE 1991)). Accordingly, it was concluded that the tumors were the consequence of repeated dermal irritation and not kerosene or jet fuel per se.
Similar findings were noted in the tests of normal paraffins. The tumor promotion activity was greatest in the treated groups displaying the highest degree of dermal irritation, i.e. 100% v/v normal paraffin test material. A low tumor incidence occurred in the groups receiving 50% or 28.6% /v normal paraffin test material (not statistically different from the control group), which correlated to low degrees of dermal irritation. The skin tumor promoting properties of these substances are considered related to repeated dermal irritation (Nessel, 1999).
Hartwig, Greim H, A Reuter, U Richter-Reichhelm HB ,Thielmann HW. Chemically induced pheochromocytomas in rats: mechanisms and relevance for human risk assessment. Crit Rev Toxicol 2009;39(8):695-718.
Nessel, Craig S., James J. Freeman, Richard C. Forgash, and Richard H. McKee. 1999. The Role of Dermal Irritation in the Skin Tumor Promoting Activity of Petroleum Middle Distillates. Toxicological Sciences 49, 48-55 (1999).
Nyska, A., Haseman, J.K., Hailey, J.R., Smetana, S., and Maronpot, R.R. (1999). The association between severe nephropathy and pheochromocytoma in the male F344 rat - the National Toxicology Program experience. Toxicol. Pathol. 27, 456-462.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.