Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Physical & Chemical properties

Vapour pressure

Currently viewing:

Administrative data

Link to relevant study record(s)

Reference
Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
Experimental starting date: 15 March 2016 Experimental completion date: 17 March 2016
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of method:
effusion method: vapour pressure balance
Specific details on test material used for the study:
Identification: ES421 Pinyl Nitrile
Appearance/Physical state: White solid
Batch: SM15077102
Purity: 98.08%
Expiry date: 22 July 2016
Storage conditions: Approximately 4 °C in the dark
Key result
Test no.:
#3
Temp.:
25 °C
Vapour pressure:
3.4 Pa
Remarks on result:
other: A total of 4 runs were completed for the main sequence. Equilibrium with regard to vapor pressure was assessed to have been reached over the final 3 runs. Tthe final 3 runs have been used to calculate definitive vapor pressure value of the test item.

The values of vapor pressure at 25 °C extrapolated from each graph are summarized in the following table:

Table 4Summary of Vapor Pressure Data

Run

Log10[Vp(25ºC)]

2

0.522

3

0.530

4

0.544

Mean

0.532

Vapor Pressure

3.40 Pa

The test item did not change in appearance under the conditions used in the determination.

Table1– Run 2 Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

2

275.15

0.003634381

155.50

1.555E-07

0.215873839

-0.665799985

3

276.15

0.003621220

174.25

1.743E-07

0.241903643

-0.616357592

4

277.15

0.003608154

203.33

2.033E-07

0.282274133

-0.549328918

5

278.15

0.003595182

228.22

2.282E-07

0.316827830

-0.499176678

6

279.15

0.003582303

259.26

2.593E-07

0.359919302

-0.443794862

7

280.15

0.003569516

276.37

2.764E-07

0.383672366

-0.416039480

8

281.15

0.003556820

333.59

3.336E-07

0.463108385

-0.334317355

9

282.15

0.003544214

380.58

3.806E-07

0.528342544

-0.277084417

10

283.15

0.003531697

421.74

4.217E-07

0.585483169

-0.232485585

11

284.15

0.003519268

478.85

4.789E-07

0.664766481

-0.177330887

12

285.15

0.003506926

536.01

5.360E-07

0.744119205

-0.128357487

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 2
(see
Figure 2) gives the following statistical data using an unweighted least squares treatment.

Slope:

-4.24 x 103

Standard error in slope:

67.5

Intercept:

14.8

Standard error in intercept:

0.241

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -4.24 x 103/temp(K) + 14.8

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.522.

Table2– Run 3 Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

2

275.15

0.003634381

154.69

1.547E-07

0.214749351

-0.668068139

3

276.15

0.003621220

172.04

1.720E-07

0.238835596

-0.621900945

4

277.15

0.003608154

193.34

1.933E-07

0.268405453

-0.571208664

5

278.15

0.003595182

219.88

2.199E-07

0.305249773

-0.515344650

6

279.15

0.003582303

253.71

2.537E-07

0.352214480

-0.453192793

7

280.15

0.003569516

282.50

2.825E-07

0.392182376

-0.406511927

8

281.15

0.003556820

325.43

3.254E-07

0.451780215

-0.345072793

9

282.15

0.003544214

367.03

3.670E-07

0.509531673

-0.292828815

10

283.15

0.003531697

420.08

4.201E-07

0.583178664

-0.234198373

11

284.15

0.003519268

481.62

4.816E-07

0.668611950

-0.174825865

12

285.15

0.003506926

534.92

5.349E-07

0.742606006

-0.129241543

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 3
(see
Figure 3) gives the following statistical data using an unweighted least squares treatment.

Slope:

-4.31 x 103

Standard error in slope:

43.3

Intercept:

15.0

Standard error in intercept:

0.155

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -4.31 x 103/temp(K) + 15.0

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.530.

Table3– Run 4 Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

2

275.15

0.003634381

151.78

1.518E-07

0.210709526

-0.676315830

3

276.15

0.003621220

168.68

1.687E-07

0.234171056

-0.630466786

4

277.15

0.003608154

191.63

1.916E-07

0.266031535

-0.575066879

5

278.15

0.003595182

221.65

2.217E-07

0.307706986

-0.511862643

6

279.15

0.003582303

249.95

2.500E-07

0.346994637

-0.459677238

7

280.15

0.003569516

287.84

2.878E-07

0.399595664

-0.398379233

8

281.15

0.003556820

325.17

3.252E-07

0.451419268

-0.345419908

9

282.15

0.003544214

369.70

3.697E-07

0.513238317

-0.289680928

10

283.15

0.003531697

420.89

4.209E-07

0.584303151

-0.233361771

11

284.15

0.003519268

473.37

4.734E-07

0.657158837

-0.182329648

12

285.15

0.003506926

542.27

5.423E-07

0.752809689

-0.123314800

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 4
(see
Figure 4) gives the following statistical data using an unweighted least squares treatment.

Slope:

-4.38 x 103

Standard error in slope:

29.5

Intercept:

15.2

Standard error in intercept:

0.105

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -4.38 x 103/temp(K) + 15.2

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of 0.544.

Conclusions:
The vapor pressure of the test item has been determined to be 3.4 Pa at 25 ºC.
Executive summary:

Thevapor pressureof ES421 Pinyl Nitrilehas been determinedto be 3.4Pa at 25 °C, using the vapor pressure balance method, designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008andMethod 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.

Description of key information

Thevapor pressureofES421 Pinyl Nitrilehas been determinedto be 3.4Pa at 25 °C, using the vapor pressure balance method, designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008andMethod 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.

Key value for chemical safety assessment

Vapour pressure:
3.4 Pa
at the temperature of:
25 °C

Additional information

A total of 4 runs were completed for the main sequence. Equilibrium with regard to vapor pressure was assessed to have been reached over the final 3 runs. Thus the final 3 runs have been used to calculate the definitive vapor pressure value for the test item.