Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Adsorption / desorption

Adsorption study was conducted for evaluating the adsorption capacity of test chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate (Acid blue 93) (CAS no.28983-56-4) from aqueous solution by using Pseudomonas putida MTCC 4910 (A. Arunarani, et. al; 2013)

. The study was performed using thebatch equilibrium method.P. putidaMTCC 4910 strain used in present study was obtained from Institute of Microbial Technology, Chandigarh, India. The bacterium was cultured in a nutrient broth medium and incubated at 37◦C in a rotary shaker at 150 rpm overnight. The culture was maintained on agar slants at 4◦C and subcultured on nutrient agar medium at monthly intervals.Test chemical concentrations used for the study were in the range from 50-300 mg/l, respectively.The adsorption isotherm experiment was performed by interacting varying concentrations of dye (50–300 mg/L) solutions withP. putida(1×108 CFU/mL) in a rotary shaker at 150 rpm for 4 h. The medium used for the interaction contains 1 mM NaCl prepared in distilled water. The interaction was followed by centrifugation at 10,000×gfor 10 min. The supernatants were carefully collected and the amounts of dye left in the supernatants were calculated by using UV–visible spectrophotometer by measuring the absorbance at 604 nm. The dye without bacteria was used as control. For determined the effect of pH on adsorption, the experiment procedure used was same as described but at different pH (4–9).The bacterial species exhibited almost 90–100% removal of Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate at an initial concentration of 250 mg/L in all the pH (4–9) tested.The amount of the dye adsorbed was determined to be constant at different pH 4-9 and ranges from 2.3 to 2.4, respectively and the Freundlich adsorption isotherm of the chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate was determined to be 0.9912 (R2). The high ‘R2’ values (linear regression coefficients) indicate that the Freundlich model predicts well the adsorption behaviour of dye Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate on P.putida than Langmuir model and thus chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate can be considered to have strong sorption on sewage sludge.

Additional information

Adsorption / desorption

Various experimental studies for the target compound Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate (CAS No. 28983-56-4) were reviewed for the adsorption end point which are summarized as below:

 

In an experimental key study from peer reviewed journal (A. Arunarani, et. al; 2013), adsorption experiment was conducted for evaluating the adsorption capacity of test chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate (Acid blue 93) (CAS no.28983-56-4) from aqueous solution by using Pseudomonas putida MTCC 4910. The study was performed using the batch equilibrium method. P. putida MTCC 4910 strain used in present study was obtained from Institute of Microbial Technology, Chandigarh, India. The bacterium was cultured in a nutrient broth medium and incubated at 37◦C in a rotary shaker at 150 rpm overnight. The culture was maintained on agar slants at 4◦C and subcultured on nutrient agar medium at monthly intervals. Test chemical concentrations used for the study were in the range from 50-300 mg/l, respectively. The adsorption isotherm experiment was performed by interacting varying concentrations of dye (50–300 mg/L) solutions with P. putida(1×108 CFU/mL) in a rotary shaker at 150 rpm for 4 h. The medium used for the interaction contains 1 mM NaCl prepared in distilled water. The interaction was followed by centrifugation at 10,000×gfor 10 min. The supernatants were carefully collected and the amounts of dye left in the supernatants were calculated by using UV–visible spectrophotometer by measuring the absorbance at 604 nm. The dye without bacteria was used as control. For determined the effect of pH on adsorption, the experiment procedure used was same as described but at different pH (4–9).The bacterial species exhibited almost 90–100% removal of Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate at an initial concentration of 250 mg/L in all the pH (4–9) tested. The amount of the dye adsorbed was determined to be constant at different pH 4-9 and ranges from 2.3 to 2.4, respectively and the Freundlich adsorption isotherm of the chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate was determined to be 0.9912 (R2). The high ‘R2’ values (linear regression coefficients) indicate that the Freundlich model predicts well the adsorption behaviour of dye Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate on P.putida than Langmuir model and thus chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate can be considered to have strong sorption on sewage sludge.

 

Another adsorption study was conducted for evaluating the adsorption capacity of test chemical Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate (CAS no. 28983-56-4) on As-synthesized hollow silica microspheres (Shiquan Liu, et. al; 2017). Hollow silica microspheres with the same size and hollow structure but with micro- or mesoporous walls were used to adsorb methyl blue (MB).The pH values of the Methyl Blue solutions used in the tests was 6.57, respectively. Hollow SiO2 microspheres were synthesized in a medium with molar ratios of 1TEOS:0.17HCl:37.224H2O:0.451C8H19N. The synthesis procedures were as follows: TEOS and octylamine were mixed under stirring for 3 min. Then, mixed solution of water and hydrochloric acid was added into the above mixture. After a reaction of 60 min, the product was filtered and collected and fully dried at room temperature. 1 g of the dried sample was subjected to hydrothermal treatment in an autoclave at 100°C for 72 h. The dried sample was calcined at 550°C for 6 h. The ramping rate was 1°C/min. The as-synthesized and thermally treated samples were designated as O60 and O60T, respectively. The dispersion of the sample is good, but the uniformity is poor. The sizes of the microspheres are mostly about 75 and 145lm, and the wall thickness of the hollow spheres is estimated to be about 18–42lm, based on the measurements on different broken spheres in different images.The adsorption kinetics of methyl blue on the samples shows the opposite trend with adsorption capacities of 3.96 and 7.94 mg/g, respectively. It can be seen that the adsorption by the as-synthesized sample increases within 5–30 min; however, it only slightly increases with the adsorption time and the total adsorption at 180 min is only about 20%. In contrast, the adsorption of MB by the hydrothermally treated sample can be divided into two stages. During the initial 60 min, the adsorption rate of the sample is fast, which can be ascribed to the adsorption on the surfaces of the spheres and the pores. With further prolonging the adsorption time, the adsorption slowly increases, which suggests a slow diffusion of the dye molecules into the hollows of the microspheres. The final adsorption efficiency is 45%, more than double the adsorption by the as-synthesized sample. The total adsorption of dye methyl blue on the hydrothermally treated sample is 43.4%.Thus, based on this, it can be concluded that the chemical has a moderate sorption on silica microsphere.

 

On the basis of above overall results for target chemical Disodium [[4 -[bis[4 -[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5 -dien-1 -ylidene]amino]benzenesulphonate (methyl blue) (from peer reviewed journals), it can be concluded that the test substance Disodium [[4-[bis[4-[(sulphonatophenyl)amino]phenyl]methylene]cyclohexa-2,5-dien-1-ylidene]amino]benzenesulphonate has a moderate to strong sorption.