Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Link to relevant study records

Referenceopen allclose all

Endpoint:
in vitro gene mutation study in mammalian cells
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Study period:
Not reported
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study
Remarks:
KL2 due to RA
Justification for type of information:
Refer to section 13 of IUCLID for details on the category justification.
Reason / purpose for cross-reference:
read-across source
Qualifier:
according to guideline
Guideline:
OECD Guideline 476 (In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.17 (Mutagenicity - In Vitro Mammalian Cell Gene Mutation Test)
Deviations:
no
GLP compliance:
yes (incl. QA statement)
Type of assay:
mammalian cell gene mutation assay
Target gene:
Thymidine kinase
Species / strain / cell type:
mouse lymphoma L5178Y cells
Details on mammalian cell type (if applicable):
- Type and identity of media: Basic medium: RPMI 1640 Hepes buffered medium (Dutch modification) (Invitrogen Corporation) containing penicillin/streptomycin (50 U/mL and 50 µg/mL, respectively) , 1 mM sodium pyruvate and 2 mM L-glutamin.
Growth medium: Basic medium, supplemented with 10% (v/v) heat-inactivated horse serum (=R10 medium).
Exposure medium: For 3 h exposure cells were exposed to the test substance in basic medium supplemented with 5% (v/v) heat inactivated horse serum (R5-medium) and for 24 h exposure: Cells were exposed to the test substance in basic medium supplemented with 10% (v/v) heat inactivated horse serum (R10-medium).
Selective medium: Selective medium consisted of basic medium supplemented with 20% (v/v) heat-inactivated horse serum (total amount of serum = 20%, R20) and 5 µg/mL trifluorothymidine (TFT).
Non-selective medium: Non-selective medium consisted of basic medium supplemented with 20% (v/v) heat-inactivated horse serum (total amount of serum = 20%, R20).
Additional strain / cell type characteristics:
not specified
Metabolic activation:
with and without
Metabolic activation system:
S9 was prepared after inducing metabolizing enzymes by injection of rats with phenobarbitone and β-naphthoflavone.
Test concentrations with justification for top dose:
First mutagenicity test:
Without S9-mix: 0.3, 1, 3, 10, 30, 40, 50, 60, 70, 80, 90 and 100 µg/mL exposure medium
With 8% (v/v) S9-mix: 0.3, 1, 3, 10, 30, 50, 100, 150, 200, 250, 300 and 350 µg/mL exposure medium

Second mutagenicity test:
Without S9-mix: 0.3,1,3,10,15,20,22.5,25,27.5,30,32.5,35,40,45 and 50 µg/mL exposure medium
With 12% (v/v) S9-mix: 0.3, 1, 3, 10, 30, 50, 100, 125, 150, 175, 200, 225 and 250 µg/mL exposure medium
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: Dimethyl sulfoxide
Untreated negative controls:
yes
Remarks:
DMSO
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
methylmethanesulfonate
Remarks:
Without metabolic activation Migrated to IUCLID6: 15 and 5 µg/mL for a 3 and 24 h treatment period
Untreated negative controls:
yes
Remarks:
DMSO
Negative solvent / vehicle controls:
yes
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
With metabolic activation Migrated to IUCLID6: 7.5 µg/mL
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Exposure duration: 3h (Experiment 1), 24 and 48 h (Experiment 2 without S9 mix) and 3h (Experiment 2 with S9 mix)
- Expression time (cells in growth medium): For expression of the mutant phenotype, the remaining cells were cultured for 2 d after the treatment period. During this culture period at least 4 x 106 cells (if possible) were subcultured every day in order to maintain log phase growth. Two days after the end of the treatment with the test substance the cells were plated for determination of the cloning efficiency (CE day 2) and the mutation frequency (MF).

SELECTION AGENT (mutation assays): Trifluorothymidine 0.5 mg/mL

NUMBER OF REPLICATIONS: Two

DETERMINATION OF CYTOTOXICITY
- Method: cloning efficiency
Evaluation criteria:
A test substance is considered positive (mutagenic) in the mutation assay if:
a) It induces a MF of more then MF(controls) + 126 in a dose-dependent manner; or
b) In case a repeat experiment is performed when a positive response is observed in one of the tester strains, the positive response should be reproducible in at least one independently repeated experiment.
An observed increase should be biologically relevant and will be compared with the historical control data range.
A test substance is considered equivocal (questionable) in the mutation assay if no clear conclusion for positive or negative result can be made after an additional confirmation study.
A test substance is considered negative (not mutagenic) in the mutation assay if:
a) None of the tested concentrations reaches a mutation frequency of MF(controls) + 126.
b) The results are confirmed in an independently repeated test.
Statistics:
No data
Key result
Species / strain:
mouse lymphoma L5178Y cells
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Additional information on results:
RANGE-FINDING/SCREENING STUDIES:
In the absence of S9-mix, no toxicity in the relative suspension growth was observed up to concentrations of 33 µg/mL compared to the relative suspension growth of the solvent control. No cell survival was observed at test substance concentrations of 100 µg/mL and above. In the presence of S9-mix, no toxicity in the relative suspension growth was observed up to concentrations of 100 µg/mL compared to the relative suspension growth of the solvent control. Hardly any cell survival was observed at the test substance concentration of 333 µg/mL.

COMPARISON WITH HISTORICAL CONTROL DATA:
The spontaneous mutation frequencies in the solvent-treated control cultures were between the minimum and maximum value of the historical control data range and within the acceptability criteria of this assay.

Evaluation of the mutagenicity: No significant increase in the mutation frequency at the TK locus was observed after treatment with Ninol CMF-E either in the absence or in the presence of S9-mix. The numbers of small and large colonies in the test material-treated cultures were comparable to the numbers of small and large colonies of the solvent controls.

ADDITIONAL INFORMATION ON CYTOTOXICITY:
First mutagenicity test: Evaluation of toxicity: In the absence of S9-mix, the relative total growth of the highest test substance concentration was reduced by 74% compared to the total growth of the solvent controls. In the presence of S9-mix, the relative total growth of the highest test substance concentration was reduced by 77% compared to the total growth of the solvent controls.

Second mutagenicity test: In the absence of S9-mix, the relative total growth of the highest test substance was reduced by 95% compared to the total growth of the solvent controls. In the presence of S9-mix, the relative total growth of the highest test substance concentration was reduced by 72% compared to the total growth of the solvent controls.

The growth rate over the two-day expression period for cultures treated with DMSO was between 13 and 23 (3 h treatment) and 37 and 38 (24 h treatment). Mutation frequencies in cultures treated with positive control chemicals were increased by 8.2 and 16-fold for MMS in the absence of S9-mix, and by 10- and 13-fold for CP in the presence of S9-mix, in the first and second experiment respectively. It was therefore concluded that the test conditions, both in the absence and presence of S9-mix, were appropriate for the detection of a mutagenic response and that the metabolic activation system (S9-mix) functioned properly. In addition the observed mutation frequencies of the positive control substances were within the acceptability criteria of this assay.

Conclusions:
Under the study conditions, the test substance was not mutagenic in the TK mutation test system both with and without metabolic activation.
Executive summary:

A study was conducted to evaluate the in vitro genetic toxicity of the read across substance, C8-18 and C18-unsatd. MEA (>95% active) according to OECD Guideline 476 and EU method B.17, in compliance with GLP. The test was performed in two independent experiments with L5178Y mouse lymphoma cells, in the absence and presence of S9-mix. In the first experiment, the substance was tested up to concentrations of 60 and 200 µg/mL in the absence and presence of 8% (v/v) S9-mix. The incubation time was 3 h. Test material was tested up to cytotoxic levels of 74 and 77% in the absence and presence of S9-mix, respectively. In the second experiment, test material was tested up to concentrations of 45 and 225 µg/mL in the absence and presence of 12% (v/v) S9-mix with incubation times of 24 and 3 h, respectively. The substance was tested up to the cytotoxic level of 95% (absence of S9-mix) and up to 72% (presence of S9-mix), but failed to induce a significant increase in the frequency of mutations. The spontaneous mutation frequencies in the solvent-treated control cultures were within historical control data range and therefore within the acceptability criteria of the assay. Mutation frequencies in positive control cultures were elevated 8.2- and 16-fold for MMS (absence of S9-mix), and 10- and 13-fold for CP (presence of S9-mix). Negative results were confirmed in an independent repeat experiment with extended exposures. Under the study conditions, the test substance was not mutagenic in the TK mutation test system both with and without metabolic activation (Verspeek-Rip, 2009). Based on the results of the read across study, the test substance is also expected to have similar mutagenicity potential in an in vitro mouse lymphoma L5178Y cells test system.

Endpoint:
in vitro cytogenicity / chromosome aberration study in mammalian cells
Type of information:
read-across based on grouping of substances (category approach)
Adequacy of study:
key study
Study period:
Not reported
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
guideline study
Remarks:
KL2 due to RA
Justification for type of information:
Refer to section 13 of IUCLID for details on the category justification.
Reason / purpose for cross-reference:
read-across source
Qualifier:
according to guideline
Guideline:
OECD Guideline 473 (In Vitro Mammalian Chromosome Aberration Test)
Deviations:
no
Qualifier:
according to guideline
Guideline:
EU Method B.10 (Mutagenicity - In Vitro Mammalian Chromosome Aberration Test)
Deviations:
no
GLP compliance:
yes
Type of assay:
in vitro mammalian chromosome aberration test
Species / strain / cell type:
lymphocytes:
Details on mammalian cell type (if applicable):
- Type and identity of media: RPMI 1640 medium (Invitrogen Corporation), supplemented with 20% (v/v) heat-inactivated (56°C; 30 min) foetal calf serum, L-glutamine (2 mM), penicillin/streptomycin (50 U/ml and 50 µg/mL respectively) and 30 U/mL heparin.
Additional strain / cell type characteristics:
not applicable
Metabolic activation:
with and without
Metabolic activation system:
S9 was prepared after inducing metabolizing enzymes by injection of rats with phenobarbitone and β-naphthoflavone.
Test concentrations with justification for top dose:
Dose range finding study:
- At 3 h exposure time: 3, 10, 33, 100 and 333 µg/mL culture medium with and without S9-mix.
- At 24 and 48 h continuous exposure time: 3, 10, 33, 100, 333 and 1000 µg/mL culture medium without S9-mix

Experiment 1 (First cytogenetic assay):
Without and with S9-mix: 33, 100 and 200 µg/mL culture medium (3 h exposure time, 24 h fixation time)

Experiment 2 (Second cytogenetic assay):
- Without S9-mix: 10, 50, 100, 150, 175, 200, 225, 250, 275 and 300 µg/mL culture medium (24 h exposure time, 24 h fixation time)
10, 50, 75, 100, 125, 150, 175 and 200 µg/mL culture medium (48 h exposure time, 48 h fixation time)
- With S9-mix: 50, 100 and 200 µg/mL culture medium (3 h exposure time, 48 h fixation time)
Vehicle / solvent:
- Vehicle(s)/solvent(s) used: DMSO
- Justification for choice of solvent/vehicle: Test material was soluble in DMSO
Untreated negative controls:
yes
Remarks:
DMSO
Negative solvent / vehicle controls:
no
True negative controls:
no
Positive controls:
yes
Positive control substance:
cyclophosphamide
Remarks:
with metabolic activation: 10 µg/mL 3 h exposure period (24 h fixation time)
Untreated negative controls:
yes
Remarks:
DMSO
Negative solvent / vehicle controls:
no
True negative controls:
no
Positive controls:
yes
Positive control substance:
mitomycin C
Remarks:
without metabolic activation: 0.1 µg/mL (48 h exposure), 0.2 (24 h exposure) and 0.5 µg/mL (3 h exposure)
Details on test system and experimental conditions:
METHOD OF APPLICATION: in medium

DURATION
- Exposure duration: 3h (Experiment 1), 24 and 48 h (Experiment 2 without S9 mix) and 3h (Experiment 2 with S9 mix)
- Fixation time (start of exposure up to fixation or harvest of cells): 24 h (Experiment 1), 24 and 48 h (Experiment 2 without S9 mix) and 48 h (Experiment 2 with S9 mix)

SPINDLE INHIBITOR (cytogenetic assays): Colchicine (0.5 µg/mL medium)
STAIN (for cytogenetic assays): Giemsa

NUMBER OF REPLICATIONS: Two

NUMBER OF CELLS EVALUATED: 1000 cells

DETERMINATION OF CYTOTOXICITY
- Method: mitotic index

OTHER EXAMINATIONS:
- Determination of polyploidy: Yes
- Determination of endoreplication: Yes
Evaluation criteria:
Evaluation criteria
A test substance was considered clastogenic if:
a) A dose-related statistically significant (Chi-square test, one-sided, p < 0.05) increase in the number of cells with chromosome aberrations
b) A significant and biologically relevant increase in the frequencies of the number of cells with chromosome aberrations in the absence of a clear dose-response relationship

A test substance was considered non-clastogenic if:
a) None of the tested concentrations induced a statistically significant increase in the number of cells with chromosome aberrations.
Statistics:
Statistics
One sided, Chi-square test to calculate dose-related statistically significant increase in the number of cells with chromosome aberrations
Key result
Species / strain:
lymphocytes: Human
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
no cytotoxicity
Vehicle controls validity:
valid
Untreated negative controls validity:
not examined
Positive controls validity:
valid
Additional information on results:
RANGE-FINDING/SCREENING STUDIES:
At the 24 and 48 h exposure time, test material was tested beyond the limit of solubility to obtain adequate toxicity data. - Precipitate of the test material was seen at 333 µg/mL

COMPARISON WITH HISTORICAL CONTROL DATA:
Yes, test data were within the laboratory historical control data range

ADDITIONAL INFORMATION ON CYTOTOXICITY:
Increased number of polyploid cells in the absence of S9-mix in a dose dependent manner in the first cytogenetic assay indicating potential to inhibit mitotic processes and to induce numerical chromosome aberrations.

The doses selected for scoring of chromosome aberrations:

Without S9-mix: 50, 100 and 150 µg/mL culture medium (24 h exposure time, 24 h fixation time).

50, 100 and 125 µg/mL culture medium (48 h exposure time, 48 h fixation time)

With S9-mix:50, 100 and 200 µg/mL culture medium (3 h exposure time, 48 h fixation time)

Conclusions:
Under the study conditions, the test substance was considered to be non-clastogenic in cultured human lymphocytes in vitro.
Executive summary:

A study was conducted to evaluate the in vitro genetic toxicity of the read across substance, C8-18 and C18-unsatd. MEA (>95% active) according to OECD Guideline 473 and EU Method B. 10, in compliance with GLP. Peripheral human lymphocytes were treated with the read across substance (experiment 1: 33, 100 and 200 µg/mL without and with S9-mix; experiment 2: 10 – 300 µg/mL without S9-mix, 50, 100 and 200 µg/mL with S9-mix) for either 3, 24 or 48 h. The frequency of cells with aberrations in the vehicle control group was within the historical control data range. Both of the positive control substances induced significant increases in the frequency of aberrations indicating the satisfactory performance of the test and of the activity of the metabolising system. The read across substance did not induce any significant or biologically relevant increases in the frequency of cells with chromosome aberrations in the presence or absence of metabolic activation, in either independent repeat experiment. No effects on the number of polyploid cells were observed both in the absence and presence of S9-mix. The substance did not disturb the mitotic processes, cell cycle progression and did not induce numerical chromosome aberrations. Under the study conditions, the test substance was considered to be non-clastogenic in cultured human lymphocytes in vitro (Verspeek-Rip, 2009). Based on the results of the read across study, the test substance is also expected to have similar clastogenicity potential in an in vitro cultured human lymphocytes.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Link to relevant study records
Reference
Endpoint:
in vivo mammalian somatic and germ cell study: gene mutation
Data waiving:
study scientifically not necessary / other information available
Justification for data waiving:
other:
Endpoint conclusion
Endpoint conclusion:
no study available

Additional information

In vitro

A study was conducted to evaluate the in vitro genetic toxicity of the read across substance, C8-18 and C18-unsatd. MEA, according to OECD Guideline 471, in compliance with GLP. The substance was tested in the Salmonella typhimurium reverse mutation assay with four histidine-requiring strains of Salmonella typhimurium (TA1535, TA1537, TA98 and TA100) and in the Escherichia coli reverse mutation assay with a tryptophan-requiring strain of Escherichia coli (WP2 uvrA). The test was performed in two independent experiments in the presence and absence of S9-mix (rat liver S9-mix induced by Aroclor). An additional experiment was performed with the strains TA1537, TA98 and WP2 uvrA in the presence of S9-mix. In the dose range finding test, the substance was tested up to concentrations of 5000 μg/plate in the absence and presence of S9-mix in the strains TA100 and WP2 uvrA. The substance precipitated on the plates at dose levels of 3330 and 5000 μg/plate. In tester strain TA100, toxicity was observed at dose levels of 333 μg/plate and upwards in the absence of S9-mix and at dose levels of 1000 μg/plate and upwards in the presence of S9-mix. In tester strain WP2 uvrA, the bacterial background lawn was not reduced at any of the concentrations tested. No biologically relevant decrease in the number of revertants was observed up to the dose level of 3330 μg/plate. Since the read across substance precipitated heavily on the plates at the read across substance concentration of 5000 μg/plate, the number of revertant colonies of this dose level could not be determined. Based on the results of the dose range finding test, the substance was tested in the first mutation assay at a concentration range of 3 to 666 μg/plate in the absence of S9-mix and at a concentration range of 10 to 1000 μg/plate in the presence of 5% (v/v) S9-mix in tester strains TA1535, TA1537 and TA98. The read across substance did not precipitate on the plates at this dose level. Toxicity was observed in all tester strains, except in TA98 in the presence of S9-mix. In an independent repeat of the assay with additional parameters, the substance was tested at a concentration range of 3 to 666 μg/plate in the absence of S9-mix and at a concentration range of 10 to 1000 μg/plate in the presence of 10% (v/v) S9-mix in tester strains TA1535, TA1537, TA98 and TA100 and at 10 to 3330 μg/plate in tester strain WP2 uvrA in the absence and presence of 10% (v/v) S9-mix. Precipitate on the plates was only observed at the dose level of 3330 μg/plate in the absence of S9-mix. Toxicity was observed in all tester strains, except in TA1537 and TA98 in the presence of S9-mix and in WP2 uvrA in the absence and presence of S9-mix. Since in the first experiment in tester strain TA98 and in the second experiment in the tester strains TA1537, TA98 and WP2 uvrA no toxicity or precipitate on the plates was observed, a third mutation experiment was performed with these strains in the presence of S9-mix (5% %(v/v) S9-mix and 10 %(v/v) S9-mix, for experiment 1 and 2, respectively). The substance was tested up to 5000 μg/plate. The read across substance precipitated on the plates at dose levels of 3330 and 5000 μg/plate. Due to the precipitate of the read across substance on the plates the bacterial background could not be determined at the dose levels of 3330 and 5000 μg/plate, except at tester strain WP2 uvrA. Cytotoxicity, as evidenced by a decrease in the number of revertants, was observed in tester strain TA98 in the presence of 5 and 10 %(v/v) S9-mix. The substance did not induce a significant dose-related increase in the number of revertant (His+) colonies in each of the four tester strains (TA1535, TA1537, TA98 and TA100) and in the number of revertant (Trp+) colonies in tester strain WP2 uvrA both in the absence and presence of S9-metabolic activation. These results were confirmed in an independently repeated experiment. In this study, the negative and strain-specific positive control values were within the laboratory historical control data ranges indicating that the test conditions were adequate and that the metabolic activation system functioned properly. Under the study conditions, the test substance was not mutagenic in the Salmonella typhimurium and Escherichia coli reverse mutation assay (Verspeek-Rip, 2014).

A study was conducted to evaluate the in vitro genetic toxicity of the read across substance, C8-18 and C18-unsatd. MEA, according to OECD Guideline 476 and EU method B.17, in compliance with GLP. The test was performed in two independent experiments with L5178Y mouse lymphoma cells, in the absence and presence of S9-mix. In the first experiment, the substance was tested up to concentrations of 60 and 200 µg/mL in the absence and presence of 8% (v/v) S9-mix. The incubation time was 3 h. Test material was tested up to cytotoxic levels of 74 and 77% in the absence and presence of S9-mix, respectively. In the second experiment, test material was tested up to concentrations of 45 and 225 µg/mL in the absence and presence of 12% (v/v) S9-mix with incubation times of 24 and 3 h, respectively. The substance was tested up to the cytotoxic level of 95% (absence of S9-mix) and up to 72% (presence of S9-mix), but failed to induce a significant increase in the frequency of mutations. The spontaneous mutation frequencies in the solvent-treated control cultures were within historical control data range and therefore within the acceptability criteria of the assay. Mutation frequencies in positive control cultures were elevated 8.2- and 16-fold for MMS (absence of S9-mix), and 10- and 13-fold for CP (presence of S9-mix). Negative results were confirmed in an independent repeat experiment with extended exposures. Under the study conditions, the test substance was not mutagenic in the TK mutation test system both with and without metabolic activation (Verspeek-Rip, 2009).

A study was conducted to evaluate the in vitro genetic toxicity of the read across substance, C8-18 and C18-unsatd. MEA, according to OECD Guideline 473 and EU Method B. 10, in compliance with GLP. Peripheral human lymphocytes were treated with the read across substance (experiment 1: 33, 100 and 200 µg/mL without and with S9-mix; experiment 2: 10 – 300 µg/mL without S9-mix, 50, 100 and 200 µg/mL with S9-mix) for either 3, 24 or 48 h. The frequency of cells with aberrations in the vehicle control group was within the historical control data range. Both of the positive control substances induced significant increases in the frequency of aberrations indicating the satisfactory performance of the test and of the activity of the metabolising system. The read across substance did not induce any significant or biologically relevant increases in the frequency of cells with chromosome aberrations in the presence or absence of metabolic activation, in either independent repeat experiment. No effects on the number of polyploid cells were observed both in the absence and presence of S9-mix. The substance did not disturb the mitotic processes, cell cycle progression and did not induce numerical chromosome aberrations. Under the study conditions, the test substance was considered to be non-clastogenic in cultured human lymphocytes in vitro (Verspeek-Rip, 2009).

Justification for classification or non-classification

Based on the results of in vitro genotoxicity studies conducted with the read-across substance C8-18 and C18-unsatd. MEA, the test substance is not considered to be genotoxic. Therefore, no classification is required for this endpoint according to EU CLP (EC 1272/2008) criteria.