Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Key value for chemical safety assessment

Genetic toxicity in vitro

Description of key information

Prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate]. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Link to relevant study records
Reference
Endpoint:
in vitro gene mutation study in bacteria
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.4 and the supporting QMRF report has been attached
Qualifier:
according to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.4, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay
Specific details on test material used for the study:
- Name of test material : Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate]
- Molecular formula:C20H4Br4Cl4O5 2/3Al
- Molecular weight : 2404.904 g/mol
- Smiles notation : C1=C2C(=C3C=C(C(=O)C(=C3OC2=C(C(=C1Br)[O-])Br)Br)Br)C4=C(C(=C(C(=C4Cl)Cl)Cl)Cl)C(=O)[O-].C1=C2C(=C3C=C(C(=O)C(=C3OC2=C(C(= C1Br)[O-])Br)Br)Br)C4=C(C(=C(C(=C4Cl)Cl)Cl)Cl)C(=O)[O-].C1=C2C(=C3C=C(C(=O)C(=C3OC2=C(C(=C1Br)[O-])Br)Br)Br)C4=C(C(=C(C(=C4Cl)Cl )Cl)Cl)C(=O)[O-].[Al+3].[Al+3]
- InChl : 1S/3C20H4Br4Cl4O5.2Al/c3*21-5-1-3-7(8-9(20(31)32)13(26)15(28)14(27)12(8)25)4-2-6(22)17(30)11(24)19(4)33-18(3)10(23)16(5)29;;/h3*1-2,29H,(H,3 1,32);;/q;;;2*+3/p-6
- Substance type : Organic
- Physical state: Solid
Target gene:
Histidine
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
not specified
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation.
Test concentrations with justification for top dose:
not specified
Vehicle / solvent:
not specified
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Details on test system and experimental conditions:
not specified
Rationale for test conditions:
not specified
Evaluation criteria:
Prediction is done considering a dose depenednt increase in the number of revertants/plate
Statistics:
not specified
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
with
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
Not specified

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 7 nearest neighbours
Domain  logical expression:Result: In Domain

((((((("a" or "b" or "c" or "d" )  and ("e" and ( not "f") )  )  and ("g" and ( not "h") )  )  and ("i" and ( not "j") )  )  and "k" )  and ("l" and ( not "m") )  )  and ("n" and "o" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Phenolphthaleins by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Direct Acylation Involving a Leaving group OR Acylation >> Direct Acylation Involving a Leaving group >> Acetates OR SNAr OR SNAr >> Nucleophilic aromatic substitution OR SNAr >> Nucleophilic aromatic substitution >> Activated halo-benzenes by Protein binding by OECD ONLY

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as High reactive AND High reactive >> Activated haloarenes by DPRA Cysteine peptide depletion

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Low reactive AND Low reactive >> Activated haloarenes by DPRA Lysine peptide depletion

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.4

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Flavonoids OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Nucleophilic addition reaction with cycloisomerization OR AN2 >> Nucleophilic addition reaction with cycloisomerization >> Hydrazine Derivatives OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Dicarbonyl compounds OR AN2 >> Schiff base formation >> Halofuranones OR AN2 >> Schiff base formation >> Specific 5-Substituted Uracil Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Haloalkenes with Electron-Withdrawing Groups OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Non-covalent interaction >> DNA intercalation >> Bleomycin and Structurally Related Compounds OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Organic Azides OR Non-covalent interaction >> DNA intercalation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Non-covalent interaction >> DNA intercalation >> Specific 5-Substituted Uracil Derivatives OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA OR Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA >> Organic Peroxy Compounds OR Radical >> Radical mechanism by ROS formation >> Five-Membered Aromatic Nitroheterocycles OR Radical >> Radical mechanism by ROS formation >> Organic Azides OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Acridone, Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Bleomycin and Structurally Related Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> C-Nitroso Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Conjugated Nitro Compounds OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrobiphenyls and Bridged Nitrobiphenyls OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Aminobiphenyl Analogs OR Radical >> Radical mechanism via ROS formation (indirect) >> Polynitroarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR SN1 OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN1 >> Alkylation by carbenium ion formed OR SN1 >> Alkylation by carbenium ion formed >> Diazoalkanes OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >> Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after nitrene formation OR SN1 >> Nucleophilic attack after nitrene formation >> Organic Azides OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium ion formation >> p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrosonium cation formation OR SN1 >> Nucleophilic attack after nitrosonium cation formation >> N-Nitroso Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrobiphenyls and Bridged Nitrobiphenyls OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation OR SN1 >> Nucleophilic substitution after glutathione-induced nitrenium ion formation >> C-Nitroso Compounds OR SN1 >> Nucleophilic substitution on diazonium ion OR SN1 >> Nucleophilic substitution on diazonium ion >> Specific Imine and Thione Derivatives OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> N-Hydroxylamines OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation OR SN2 >> Alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Haloalkenes with Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Specific 5-Substituted Uracil Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct nucleophilic attack on diazonium cation OR SN2 >> Direct nucleophilic attack on diazonium cation >> Hydrazine Derivatives OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Halofuranones OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS v.1.4

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Formamides OR Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> 5-alkoxyindoles OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR Schiff base formers OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  OR Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> Ethanolamines (including morpholine) OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes OR Schiff base formers >> Chemicals Activated by P450 to Mono-aldehydes >> Thiazoles OR SN1 OR SN1 >> Carbenium Ion Formation OR SN1 >> Carbenium Ion Formation >> Allyl benzenes OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Primary (unsaturated) heterocyclic amine OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary (unsaturated) heterocyclic amine  OR SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine by DNA binding by OECD

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Non binder, MW>500 by Estrogen Receptor Binding

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Moderate binder, OH grooup OR Non binder, impaired OH or NH2 group OR Non binder, non cyclic structure OR Non binder, without OH or NH2 group OR Strong binder, OH group OR Very strong binder, OH group OR Weak binder, OH group by Estrogen Receptor Binding

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as No superfragment by Superfragments ONLY

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Halogens AND Non-Metals by Groups of elements

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Alkali Earth OR Transition Metals by Groups of elements

Domain logical expression index: "n"

Parametric boundary:The target chemical should have a value of log Kow which is >= 5.03

Domain logical expression index: "o"

Parametric boundary:The target chemical should have a value of log Kow which is <= 12.1

Conclusions:
Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate]. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

 

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Genetic toxicity in vivo

Description of key information

Prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate].. The study assumed the use of male and female rat. Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in male and female rat and hence, according to the prediction made, it is not likely to classify as a gene mutant in vivo.Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

 

Link to relevant study records
Reference
Endpoint:
in vivo mammalian somatic cell study: cytogenicity / erythrocyte micronucleus
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.4 and the supporting QMRF report
Qualifier:
according to guideline
Guideline:
other: As mention below
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.4, 2017
GLP compliance:
not specified
Type of assay:
micronucleus assay
Specific details on test material used for the study:
- Name of test material : Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate]
- Molecular formula:C20H4Br4Cl4O5 2/3Al
- Molecular weight : 2404.904 g/mol
- Smiles notation : C1=C2C(=C3C=C(C(=O)C(=C3OC2=C(C(=C1Br)[O-])Br)Br)Br)C4=C(C(=C(C(=C4Cl)Cl)Cl)Cl)C(=O)[O-].C1=C2C(=C3C=C(C(=O)C(=C3OC2=C(C(= C1Br)[O-])Br)Br)Br)C4=C(C(=C(C(=C4Cl)Cl)Cl)Cl)C(=O)[O-].C1=C2C(=C3C=C(C(=O)C(=C3OC2=C(C(=C1Br)[O-])Br)Br)Br)C4=C(C(=C(C(=C4Cl)Cl )Cl)Cl)C(=O)[O-].[Al+3].[Al+3]
- InChl : 1S/3C20H4Br4Cl4O5.2Al/c3*21-5-1-3-7(8-9(20(31)32)13(26)15(28)14(27)12(8)25)4-2-6(22)17(30)11(24)19(4)33-18(3)10(23)16(5)29;;/h3*1-2,29H,(H,3 1,32);;/q;;;2*+3/p-6
- Substance type : Organic
- Physical state: Solid
Species:
rat
Strain:
not specified
Details on species / strain selection:
not specified
Sex:
male/female
Details on test animals or test system and environmental conditions:
not specified
Route of administration:
not specified
Vehicle:
not specified
Details on exposure:
not specified
Duration of treatment / exposure:
not specified
Frequency of treatment:
not specified
Post exposure period:
not specified
Remarks:
not specified
No. of animals per sex per dose:
not specified
Control animals:
not specified
Positive control(s):
not specified
Tissues and cell types examined:
not specified
Details of tissue and slide preparation:
not specified
Evaluation criteria:
Prediction was done considering chromosomal aberration in mammalian cell line used.
Statistics:
not specified
Sex:
not specified
Genotoxicity:
negative
Toxicity:
not specified
Vehicle controls validity:
not specified
Negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
Not specified.

The prediction was based on dataset comprised from the following descriptors: "Chromosome aberration"
Estimation method: Takes highest mode value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

(((((("a" or "b" or "c" or "d" )  and ("e" and ( not "f") )  )  and ("g" and ( not "h") )  )  and "i" )  and "j" )  and ("k" and "l" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Phenolphthaleins by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Direct Acylation Involving a Leaving group OR Acylation >> Direct Acylation Involving a Leaving group >> Acetates OR SNAr OR SNAr >> Nucleophilic aromatic substitution OR SNAr >> Nucleophilic aromatic substitution >> Activated halo-benzenes by Protein binding by OECD ONLY

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as High reactive AND High reactive >> Activated haloarenes by DPRA Cysteine peptide depletion

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Low reactive AND Low reactive >> Activated haloarenes by DPRA Lysine peptide depletion

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OASIS v.1.4

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Radical OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR SN1 OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives by DNA binding by OASIS v.1.4

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Not possible to classify according to these rules (GSH) by Protein binding potency

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Moderately reactive (GSH) OR Moderately reactive (GSH) >> 2-Chloroacetamides (SN2) by Protein binding potency

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as No superfragment by Superfragments ONLY

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Not bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "k"

Parametric boundary:The target chemical should have a value of log Kow which is >= 3.31

Domain logical expression index: "l"

Parametric boundary:The target chemical should have a value of log Kow which is <= 12.1

Conclusions:
Di aluminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate]was predicted to not induce gene mutation in male and female rat and hence, according to the prediction made, it is not likely to classify as a gene mutant in vivo.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate].. The study assumed the use of male and female rat. Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in male and female rat and hence, according to the prediction made, it is not likely to classify as a gene mutant in vivo.

 

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed (negative)

Additional information

Gene mutation in vitro:

 

Prediction model based estimation and data from read across chemicals have been reviewed to determine the mutagenic nature of

Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] (CAS no 15876-58-1). The studies are as summarized below:

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate]. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro. Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

Salmonella/ mammalian-microsome test was performed by Jeanne M. Et al.(Mutation Research, 1979) to evaluate the mutagenic nature of the read across chemicals D&C Red No. 27 (RA CAS no13473-26-2; IUPAC name: 2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3',6'-dihydroxy-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one . Salmonella/ mammalian-microsome test was performed to evaluate the mutagenic nature of the test compound D and C Red no. 27 (13473 -26 -2). The 2 ml of liquid top agar was cooled to 45°C and 0.1 ml of a broth culture of microorganism and test substance in volumes of ≤ 0.4 ml of DMSO was added prior to placing on minimal agar plates. After 48 h incubation at 37°C, the colonies which reverted to the prototroph were counted and compared to counts on the control plate (containing no test substance) to demonstrate mutagenicity or toxicity. The test material was exposed in the presence and absence of metabolic activation.Materials which caused a 2-fold increase of revertants, as compared to the number of spontaneous revertants on the control plates, was denoted as mutagens. Those which reduced the number of revertants were considered inhibitory. The test compound D and C Red no. 27 failed to induce mutation in Salmonella typhimurium TA98, TA1537, TA100, TA1535) and hence is negative for gene mutation in vitro

 

Brown et al (Mutation Research, 1979) performed Salmonella/mammalian microsome assay evaluate the mutagenic nature of D and C Red No. 27/ Phloxine B (RA CAS no 18472 -87 -2; IUPAC name: 2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3',6'-dihydroxy-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one). The dye was dissolved in dimethylsulfoxide and up to 0.2 ml was introduced into 2.5 ml of the tempered top agar together with 0.1 ml Salmonella typhimuriumbroth suspension and 0.25 ml Aroclor 1254 induced rat liver S9. The mixtures was plated on 20 ml of Vogel-Bonner E bottom agar in the usual fashion and incubated for 3 days at 35°. Each agent was tested with all 5 basic tester strains (TA1535, TA100, TA1537, TA1538, TA98) with and without microsomal activation at concentrations of 0, 10, 50 or 100 µg/plate. Phloxine B did not show any mutagenic activity in the Salmonella typhimurium tester strains TA98, TA100, TA1535, TA1537 and TA1538 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.

 

Gene mutation in vivo:

 

Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate].. The study assumed the use of male and female rat. Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] was predicted to not induce gene mutation in male and female rat and hence, according to the prediction made, it is not likely to classify as a gene mutant in vivo.Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.

 

In the in vivo micronucleus test performed by Hayashi et al (Food and Chemical Toxicology, 1988) for structurally similar read across chemical Acid Red 92 (Phloxine; RA CAS no 6441 -77 -6; IUPAC name: Dipotassium 3,6-dichloro-2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)benzoate). The chemical was investigated in male ddY mice for mutagenicity. The test chemical was administered by intraperitoneal injection once (at doses 0, 30, 60 or 120 mg/kg) or 4 times 24 hours apart (at a dose of 60 mg/kg/injection). Femoral marrow cells were flushed out with foetal bovine serum and smeared on clean glass slides. Cells were fixed with methanol for 5 min, and stained with Acridine Orange for the pilot experiment and with Giemsa for the full-scale test. One thousand polychromatic erythrocytes per mouse were scored using a light microscope. After treatment, the number of micronucleated polychromatic erythrocytes (MNPCEs) was recorded and the proportion of polychromatic erythrocytes (PCEs) among the total erythrocytes was evaluated. Based on the results, no mutagenic effects could be detected. Therefore, Acid Red 92 is considered to be non-mutagenic when male ddY mice were exposed to the test chemical.

 

Genetic toxicity in vivo study (SCCS, 2004) was performed for another structurally similar read across chemical Acid Red 92 (RA CAS no 18472 -87 -2; IUPAC name: 2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3',6'-dihydroxy-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one) using male and female NMRI mice. Acid red 92 was injected intraperitoneally in mice and the number of micronucleus formed in the polychromatic erythrocytes was noted. The positive control (Cyclophosphamide) induced 2.030 % of MN in PCEs (0.08 % in the control animals: significance p 0.0040). In the treated animals with 100 mg/kg a percentage of MN 0.150 (24h) and 0.110 (48h) was observed: these values, although higher than the control, had a p > 0.34. A reduction of PCE was observed, thus indicating a cytotoxic effect of the test item in the bone marrow cells. Acid Red 92 did not induce micronucleus in the bone maroow polychromatic erthrocytes and hence it is non mutagenic in the In vivo Mammalian Erythrocyte Micronucleus Test performed

 

Based on the data available for the target chemical and its read across, Dialuminium tris[2-(2,4,5,7-tetrabromo-6-oxido-3-oxoxanthen-9-yl)-3,4,5,6-tetrachlorobenzoate] (CAS no 15876-58-1) does not exhibit gene mutation in vitro and in vivo and hence does not classify for mutagenic effects as per the criteria mentioned in CLP regulation.

Justification for classification or non-classification

Thus based on the above annotation and CLP criteria , the test chemical Dialuminium tris(2-(2,4,5,7- tetrabromo-6-oxido-3-oxoxanthen-9-yl) 3,4,5,6- tetrachlorobenzoate) is considered to be non-mutagenic in vitro and in vivo.