Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 606-647-0 | CAS number: 208338-50-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2000-12-07 to 2001-03-21
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: see 'Remark'
- Remarks:
- The study was performed in compliance with the Good Laboratory Practice (GLP) regulations (revised in 1997, ENV/MC/CHEM(98)17).The method followed that described in the OECD Guidelines for Testing of Chemicals (Adopted: 4 April 1984) No 471 "Bacterial Reverse Mutation Test".
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 001
- Report date:
- 2001
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- Principles of method if other than guideline:
- none
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- (trans,trans)-5-{(4-Propyl[1,1-bicyclohexyl]-4-yl)-difluormethoxy}-1,2,3-trifluorbenzene
- EC Number:
- 606-647-0
- Cas Number:
- 208338-50-5
- Molecular formula:
- C₂₂H₂₉F₅O
- IUPAC Name:
- (trans,trans)-5-{(4-Propyl[1,1-bicyclohexyl]-4-yl)-difluormethoxy}-1,2,3-trifluorbenzene
Constituent 1
Method
- Target gene:
- HIS operon (S. thyphimurium)
TRP operon (E. coli)
Species / strainopen allclose all
- Species / strain / cell type:
- S. typhimurium TA 1535
- Details on mammalian cell type (if applicable):
- his G 46, uvrB, rfa
- Additional strain / cell type characteristics:
- other: mutations in the histidine operon
- Species / strain / cell type:
- S. typhimurium TA 1537
- Details on mammalian cell type (if applicable):
- his C 3076, uvrB, rfa
- Additional strain / cell type characteristics:
- other: mutations in the histidine operon
- Species / strain / cell type:
- S. typhimurium TA 98
- Details on mammalian cell type (if applicable):
- his D 3052, uvrB, rfa + R-factor
- Additional strain / cell type characteristics:
- other: mutations in the histidine operon
- Species / strain / cell type:
- S. typhimurium TA 100
- Details on mammalian cell type (if applicable):
- his G 46, uvrB, rfa + R-factor
- Additional strain / cell type characteristics:
- other: mutations in the histidine operon
- Species / strain / cell type:
- S. typhimurium TA 102
- Details on mammalian cell type (if applicable):
- his G 428, rfa + R-factor
- Additional strain / cell type characteristics:
- other: mutations in the histidine operon
- Species / strain / cell type:
- E. coli WP2
- Details on mammalian cell type (if applicable):
- his C 3076, uvrB, rfa
- Additional strain / cell type characteristics:
- other: mutations in the tryptophan operon
- Metabolic activation:
- with and without
- Metabolic activation system:
- rat liver homogenate (S9 mix) with standard co-factors with metabolic activation (Aroclor)
- Test concentrations with justification for top dose:
- The test material concentrations were used selected according to the EC and OECD guidelines for this test system and the requirements of the Labor Ministry of Japan:
1. Series: 5.00, 15.8, 50.0, 158, 500, 1580 and 5000 µg/plate
2. Series: 50.0, 158, 500, 1580 and 5000 µg/plate - Vehicle / solvent:
- Acetone
Controlsopen allclose all
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- Positive controls:
- yes
- Positive control substance:
- N-ethyl-N-nitro-N-nitrosoguanidine
- Positive controls:
- yes
- Positive control substance:
- 9-aminoacridine
- Positive controls:
- yes
- Positive control substance:
- benzo(a)pyrene
- Remarks:
- with S9
- Positive controls:
- yes
- Positive control substance:
- other: daunomycine
- Positive controls:
- yes
- Positive control substance:
- other: 2-aminoanthracene
- Remarks:
- with S9
- Positive controls:
- yes
- Positive control substance:
- cumene hydroperoxide
- Details on test system and experimental conditions:
- METHOD OF APPLICATION: in agar (plate incorporation)
Metabolic acticvation:
1st Series: 10% S9 mix
2nd Series: 30% S9 mix - Rationale for test conditions:
- According to Guideline
- Evaluation criteria:
- The following criteria, based upon the historical controls of the laboratory and statistical considerations, are established:
Mean Number of Colonies Maximal Mean Number of Colonies over the Actual(Solvent Control)
Solvent Control (Test Material)
<=10 <=9 >=30
<=30 <=19 >=40
<=80 <=29 >=80
<=200 <=49 >=120
<=500 <=79 >=200
Assessment No increase Clear increase
All further results, ranging between "no" and "clear", are assessed as "weak in-creases".Interpretations:A test material is defined as non-mutagenic in this assay if "no" or "weak increases" occur in the first and second series of the main experiment. ("Weak increases" randomly occur due to experimental variation.). A test material is defined as mutagenic in this assay if: - a dose-related (over at least two test material concentrations) increase in the number of revertants is induced, the maximal effect is a "clear increase", and the effects are reproduced at similar concentration levels in the same test system;- "clear increases" occur at least at one test material concentration, higher concentrations show strong precipitation or cytotoxicity, and the effects are reproduced at the same concentration level in the same test system.In all further cases, a third test series with the bacterial strain in question should be performed. If the criteria for a positive test result are not fulfilled in at least two out of the three series, the test material is defined as being non-mutagenic in this test system. - Statistics:
- No statistics has been applied
Results and discussion
Test resultsopen allclose all
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- E. coli WP2 uvr A
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- Precipitation occured at 50 and 500 µg/plate.
- Remarks on result:
- other: all strains/cell types tested
- Remarks:
- Migrated from field 'Test system'.
Applicant's summary and conclusion
- Conclusions:
- With and without addition of S9 mix as the external metabolizing system, the test item was not mutagenic under the experimental conditions described.
- Executive summary:
Purpose
The purpose of this in vitro reverse gene mutation test is to identify agents that cause mutations in bacteria cells thus providing information on possible health hazards for the test material and serve as a rational basis for risk assessment to the genotoxic potential of the test item in man.
Study Design
The investigations for mutagenic potential were performed using Salmonella typhimurium tester strains TA 98, TA 100, TA 102, TA 1535 and TA 1537, and Escherichia coli WP2 uvrA pkM101. The plate incorporation test with and without addition of liver S9 mix from Aroclor 1254-pretreated rats was used. Two independent experimental series were performed for all strains. In the series with S9 mix, 10 % or 20 % S9 in the S9 mix were used in the 1st or 2nd series, respectively.
Results
The test material was dissolved in acetone and tested at concentrations ranging from 5.00 to 5000 µg/plate. Precipitation of the test material on the agar plates occurred at concentrations >=500 or 1580 µg/plate, depending upon the experimental condition tested. Toxicity to the bacteria was not observed.
Daunomycin, N-ethyl-N'-nitro-N-nitroso-guanidine, 9-aminoacridine and cumene hydroperoxide served as strain specific positive control compounds in the absence of S9 mix. 2-Aminoanthracene and benzo[a]pyrene were used for testing the bacteria and the activity of the S9 mix. Each treatment with the substances used as positive controls led to a clear increase in revertant colonies, thus showing the expected reversion properties of all strains and good metabolic activity of the S9 mix used.
Conclusions
With and without addition of S9 mix as the external metabolizing system, the test material was not mutagenic under the experimental conditions described.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.