Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Description of key information

Acute oral toxicity

LD50 was estimated to be 2598.40mg/kg bw, when female Wistar rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) orally.

Acute dermal toxicity

LD50 was estimated to be 3738.35mg/kg bw, when male and female Sprague-Dawley rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) by dermal application.

Key value for chemical safety assessment

Acute toxicity: via oral route

Link to relevant study records
Reference
Endpoint:
acute toxicity: oral
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR toolbox v3.4 and the QMRF report has been attached.
Qualifier:
equivalent or similar to guideline
Guideline:
other: As mentioned below
Principles of method if other than guideline:
Prediction was done using OECD QSAR toolbox v3.4, 2017
GLP compliance:
not specified
Test type:
other: not specified
Limit test:
no
Specific details on test material used for the study:
- Name of test material: 5-acetamido-2-aminobenzenesulphonic acid
- IUPAC name: 2-amino-5-acetamidobenzene-1-sulfonic acid
- Molecular formula: C8H10N2O4S
- Molecular weight: 230.243 g/mole
- Smiles :O=C(Nc1ccc(N)c(S(=O)(=O)O)c1)C
- Inchl: 1S/C8H10N2O4S/c1-5(11)10-6-2-3-7(9)8(4-6)15(12,13)14/h2-4H,9H2,1H3,(H,10,11)(H,12,13,14)
- Substance type: Organic
- Physical state: Solid crystal powder (white to yellowish grey)
Species:
rat
Strain:
Wistar
Sex:
female
Details on test animals or test system and environmental conditions:
No data available
Route of administration:
oral: gavage
Vehicle:
water
Details on oral exposure:
No data available
Doses:
2598.40mg/kg bw
No. of animals per sex per dose:
No data available
Control animals:
not specified
Details on study design:
No data available
Statistics:
No data available
Preliminary study:
No data available
Sex:
female
Dose descriptor:
LD50
Effect level:
2 598.4 mg/kg bw
Based on:
test mat.
Remarks on result:
other: 50% mortality was observed
Mortality:
No data available
Clinical signs:
other: No data available
Gross pathology:
No data available
Other findings:
No data available

The prediction was based on dataset comprised from the following descriptors: LD50
Estimation method: Takes average value from the 6 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((("a" or "b" or "c" or "d" or "e" )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and ("j" and ( not "k") )  )  and "l" )  and ("m" and ( not "n") )  )  and ("o" and ( not "p") )  )  and ("q" and "r" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Anilines (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after nitrenium ion formation AND SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.4

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Strong binder, NH2 group by Estrogen Receptor Binding

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Acylation involving an activated (glucuronidated) carboxamide group AND Acylation >> Acylation involving an activated (glucuronidated) carboxamide group >> Carboxylic Acid Amides AND Acylation >> Direct acylation involving a leaving group AND Acylation >> Direct acylation involving a leaving group >> Carboxylic Acid Amides AND Acylation >> Ester aminolysis AND Acylation >> Ester aminolysis >> Amides AND AN2 AND AN2 >> Michael-type addition to quinoid structures  AND AN2 >> Michael-type addition to quinoid structures  >> Carboxylic Acid Amides AND AN2 >> Michael-type addition to quinoid structures  >> Substituted Anilines by Protein binding by OASIS v1.4

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after nitrenium ion formation AND SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.4

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as AN2 OR AN2 >>  Michael-type addition, quinoid structures OR AN2 >>  Michael-type addition, quinoid structures >> Quinoneimines OR AN2 >>  Michael-type addition, quinoid structures >> Quinones and Trihydroxybenzenes OR AN2 >> Carbamoylation after isocyanate formation OR AN2 >> Carbamoylation after isocyanate formation >> N-Hydroxylamines OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered Lactones OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation >> Dicarbonyl compounds OR AN2 >> Schiff base formation >> Polarized Haloalkene Derivatives OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation OR AN2 >> Schiff base formation by aldehyde formed after metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >> Shiff base formation after aldehyde release OR AN2 >> Shiff base formation after aldehyde release >> Specific Acetate Esters OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Haloalkenes with Electron-Withdrawing Groups OR AN2 >> Thioacylation via nucleophilic addition after cysteine-mediated thioketene formation >> Polarized Haloalkene Derivatives OR No alert found OR Non-covalent interaction OR Non-covalent interaction >> DNA intercalation OR Non-covalent interaction >> DNA intercalation >> Amino Anthraquinones OR Non-covalent interaction >> DNA intercalation >> Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines OR Non-covalent interaction >> DNA intercalation >> N-Hydroxyethyl Lactams OR Non-covalent interaction >> DNA intercalation >> Organic Azides OR Non-covalent interaction >> DNA intercalation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR Non-covalent interaction >> DNA intercalation >> Quinones and Trihydroxybenzenes OR Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    OR Non-specific >> Incorporation into DNA/RNA, due to structural analogy with  nucleoside bases    >> Specific Imine and Thione Derivatives OR Radical >> Generation of ROS by glutathione depletion (indirect) OR Radical >> Generation of ROS by glutathione depletion (indirect) >> Haloalkanes Containing Heteroatom OR Radical >> Radical mechanism by ROS formation OR Radical >> Radical mechanism by ROS formation >> Organic Azides OR Radical >> Radical mechanism via ROS formation (indirect) >> Amino Anthraquinones OR Radical >> Radical mechanism via ROS formation (indirect) >> Coumarins OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic Amines OR Radical >> Radical mechanism via ROS formation (indirect) >> Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitroarenes with Other Active Groups OR Radical >> Radical mechanism via ROS formation (indirect) >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Aminobiphenyl Analogs OR Radical >> Radical mechanism via ROS formation (indirect) >> p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Quinones and Trihydroxybenzenes OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific Imine and Thione Derivatives OR Radical >> ROS formation after GSH depletion (indirect) OR Radical >> ROS formation after GSH depletion (indirect) >> Quinoneimines OR SN1 >> Alkylation after metabolically formed carbenium ion species OR SN1 >> Alkylation after metabolically formed carbenium ion species >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN1 >> Carbenium ion formation OR SN1 >> Carbenium ion formation >> Alpha-Haloethers OR SN1 >> Nucleophilic attack after carbenium ion formation OR SN1 >> Nucleophilic attack after carbenium ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack after diazonium or carbenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Amino Anthraquinones OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrene formation OR SN1 >> Nucleophilic attack after nitrene formation >> Organic Azides OR SN1 >> Nucleophilic attack after nitrenium ion formation >> N-Hydroxylamines OR SN1 >> Nucleophilic attack after nitrenium ion formation >> p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and nitrenium ion formation >> p-Substituted Mononitrobenzenes OR SN1 >> Nucleophilic substitution after carbenium ion formation OR SN1 >> Nucleophilic substitution after carbenium ion formation >> Monohaloalkanes OR SN1 >> Nucleophilic substitution on diazonium ion OR SN1 >> Nucleophilic substitution on diazonium ion >> Specific Imine and Thione Derivatives OR SN2 OR SN2 >> Acylation OR SN2 >> Acylation >> N-Hydroxylamines OR SN2 >> Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a leaving group after metabolic activation OR SN2 >> Acylation involving a leaving group after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction OR SN2 >> Alkylation by epoxide metabolically formed after E2 reaction >> Monohaloalkanes OR SN2 >> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Haloalkenes with Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polarized Haloalkene Derivatives OR SN2 >> Alkylation, direct acting epoxides and related after P450-mediated metabolic activation >> Polycyclic Aromatic Hydrocarbon and Naphthalenediimide Derivatives OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Monohaloalkanes OR SN2 >> Alkylation, nucleophilic substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >> Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting epoxides formed after metabolic activation OR SN2 >> Direct acting epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct acting epoxides formed after metabolic activation >> Quinoline Derivatives OR SN2 >> Direct acylation involving a leaving group OR SN2 >> Direct acylation involving a leaving group >> Acyl Halides OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >> Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol (glutathione) conjugation >> Geminal Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2 >> SN2 at sp3 and activated sp2 carbon atom OR SN2 >> SN2 at sp3 and activated sp2 carbon atom >> Polarized Haloalkene Derivatives OR SN2 >> SN2 at sp3-carbon atom OR SN2 >> SN2 at sp3-carbon atom >> Alpha-Haloethers OR SN2 >> SN2 at sulfur atom OR SN2 >> SN2 at sulfur atom >> Sulfonyl Halides OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with Other Active Groups by DNA binding by OASIS v.1.4

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR SN1 OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Secondary aromatic amine by DNA binding by OECD

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as No alert found by DNA alerts for AMES by OASIS v.1.4

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Radical OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR SN1 OR SN1 >> Nucleophilic attack after nitrenium ion formation OR SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA alerts for AMES by OASIS v.1.4

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Non-Metals by Groups of elements

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Halogens by Groups of elements

Domain logical expression index: "o"

Referential boundary: The target chemical should be classified as Aniline AND Aryl AND Organic amide and thioamide AND Sulfonic acid by Organic Functional groups

Domain logical expression index: "p"

Referential boundary: The target chemical should be classified as Aminoaniline, meta by Organic Functional groups

Domain logical expression index: "q"

Parametric boundary:The target chemical should have a value of log Kow which is >= -3.55

Domain logical expression index: "r"

Parametric boundary:The target chemical should have a value of log Kow which is <= -1.53

Interpretation of results:
other: Not classified
Conclusions:
LD50 was estimated to be 2598.40mg/kg bw, when female Wistar rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) orally.
Executive summary:

In a prediction done by SSS (2017) using the OECD QSAR toolbox with log kow as the primary descriptor, the acute oral toxicity was estimated for 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6),LD50 was estimated to be 2598.40mg/kg bw, when female Wistar rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6)orally.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
LD50
Value:
2 598.4 mg/kg bw
Quality of whole database:
Data is Klimicsh 2 and from QSAR Toolbox 3.4. (2017)

Acute toxicity: via inhalation route

Endpoint conclusion
Endpoint conclusion:
no study available

Acute toxicity: via dermal route

Link to relevant study records
Reference
Endpoint:
acute toxicity: dermal
Type of information:
(Q)SAR
Adequacy of study:
weight of evidence
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR toolbox v3.4 and the QMRF report has been attached.
Qualifier:
according to guideline
Guideline:
other: As mentioned below
Principles of method if other than guideline:
Prediction was done using OECD QSAR toolbox v3.4, 2017
GLP compliance:
not specified
Test type:
other: not specified
Limit test:
no
Specific details on test material used for the study:
- Name of test material: 5-acetamido-2-aminobenzenesulphonic acid
- IUPAC name: 2-amino-5-acetamidobenzene-1-sulfonic acid
- Molecular formula: C8H10N2O4S
- Molecular weight: 230.243 g/mole
- Smiles :O=C(Nc1ccc(N)c(S(=O)(=O)O)c1)C
- Inchl: 1S/C8H10N2O4S/c1-5(11)10-6-2-3-7(9)8(4-6)15(12,13)14/h2-4H,9H2,1H3,(H,10,11)(H,12,13,14)
- Substance type: Organic
- Physical state: Solid crystal powder (white to yellowish grey)
Species:
rat
Strain:
Sprague-Dawley
Sex:
male/female
Details on test animals or test system and environmental conditions:
No data available
Type of coverage:
semiocclusive
Vehicle:
water
Details on dermal exposure:
No data available
Duration of exposure:
No data available
Doses:
3738.35 mg/kg bw
No. of animals per sex per dose:
5
Control animals:
not specified
Details on study design:
No data available
Statistics:
No data available
Preliminary study:
No data available
Sex:
male/female
Dose descriptor:
LD50
Effect level:
3 738.35 mg/kg bw
Based on:
test mat.
Remarks on result:
other: 50% mortality was observed
Mortality:
50% mortality was observed
Clinical signs:
other: No data available
Gross pathology:
No data available
Other findings:
No data available

The prediction was based on dataset comprised from the following descriptors: LD50
Estimation method: Takes average value from the 5 nearest neighbours
Domain  logical expression:Result: In Domain

(((((((("a" or "b" or "c" or "d" or "e" )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and "j" )  and "k" )  and "l" )  and ("m" and ( not "n") )  )  and ("o" and "p" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Anilines (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after nitrenium ion formation AND SN1 >> Nucleophilic attack after nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.4

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Strong binder, NH2 group by Estrogen Receptor Binding

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Acylation involving an activated (glucuronidated) carboxamide group AND Acylation >> Acylation involving an activated (glucuronidated) carboxamide group >> Carboxylic Acid Amides AND Acylation >> Direct acylation involving a leaving group AND Acylation >> Direct acylation involving a leaving group >> Carboxylic Acid Amides AND Acylation >> Ester aminolysis AND Acylation >> Ester aminolysis >> Amides AND AN2 AND AN2 >> Michael-type addition to quinoid structures  AND AN2 >> Michael-type addition to quinoid structures  >> Carboxylic Acid Amides AND AN2 >> Michael-type addition to quinoid structures  >> Substituted Anilines by Protein binding by OASIS v1.4

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates OR Acylation >> P450 Mediated Activation to Isocyanates or Isothiocyanates >> Formamides OR Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Arenes OR Michael addition >> Polarised Alkenes-Michael addition OR Michael addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated esters OR SN1 OR SN1 >> Iminium Ion Formation OR SN1 >> Iminium Ion Formation >> Aliphatic tertiary amines OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Aromatic nitro OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as Acylation AND Acylation >> Direct Acylation Involving a Leaving group AND Acylation >> Direct Acylation Involving a Leaving group >> Acetates by Protein binding by OECD

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Acylation >> Direct Acylation Involving a Leaving group >> Anhydrides OR No alert found OR SN2 OR SN2 >> SN2 reaction at a sulphur atom OR SN2 >> SN2 reaction at a sulphur atom >> Disulfides OR SNAr OR SNAr >> Nucleophilic aromatic substitution OR SNAr >> Nucleophilic aromatic substitution >> Activated halo-benzenes by Protein binding by OECD

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as No superfragment by Superfragments ONLY

Domain logical expression index: "k"

Referential boundary: The target chemical should be classified as Class 5 (Not possible to classify according to these rules) by Acute aquatic toxicity classification by Verhaar (Modified) ONLY

Domain logical expression index: "l"

Referential boundary: The target chemical should be classified as Bioavailable by Lipinski Rule Oasis ONLY

Domain logical expression index: "m"

Referential boundary: The target chemical should be classified as Stable form by Tautomers unstable

Domain logical expression index: "n"

Referential boundary: The target chemical should be classified as Enol form by Tautomers unstable

Domain logical expression index: "o"

Parametric boundary:The target chemical should have a value of log Kow which is >= -7.06

Domain logical expression index: "p"

Parametric boundary:The target chemical should have a value of log Kow which is <= 0.668

Interpretation of results:
other: Not classified
Conclusions:
LD50 was estimated to be 3738.35mg/kg bw, when male and female Sprague-Dawley rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) by dermal application.
Executive summary:

In a prediction done by SSS (2017) using the OECD QSAR toolbox with log kow as the primary descriptor, the acute dermal toxicity was estimated for 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6),LD50 was estimated to be 3738.35mg/kg bw, when male and female Sprague-Dawley rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) by dermal application.

Endpoint conclusion
Endpoint conclusion:
no adverse effect observed
Dose descriptor:
LD50
Value:
3 738.35 mg/kg bw
Quality of whole database:
Data is Klimicsh 2 and from QSAR Toolbox 3.4. (2017)

Additional information

Acute oral toxicity

In different studies, 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) has been investigated for acute oral toxicity to a greater or lesser extent. Often are the studies based on in vivo experiments and estimated data in rodents, i.e. most commonly in rats 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6).The predicted data using the OECD QSAR toolbox has also been compared with the experimental studies.

In a prediction done by SSS (2017) using the OECD QSAR toolbox with log kow as the primary descriptor, the acute oral toxicity was estimated for 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6),LD50 was estimated to be 2598.40mg/kg bw, when female Wistar rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6)orally.

Based on the QSAR prediction done using the Danish (Q)SAR Database, the LD50 was estimated to be11000mg/kg bw on rat for test substance2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6).

In another experimental study given by Greim H, J. Ahlers, R. Biasd, B. Broecker, H. Hollander, H.-P. Gelbke.H.-J. Klimisch, I. Mangelsdorf, A. Paetz, N Schgn, G. Stropp,R. Vogel, C. Weber, K. Ziegler-Skylakakis And E. Bayer (Chemophere. Vol. 28, No. 12, pp. 2203.2236, 1994) on structurally similar read across substance6-aminonaphthalene-1,3-disulfonic acid (118-33-2),In a acute oral toxicity study, rat were treated with 6-aminonaphthalene-1,3-disulfonic acid (118-33-2) in the concentration of 2000 mg/kg bw orally.  50% mortality was observed in treated rat at 2000 mg/kg bw. Therefore, LD50 was considered to 2000 mg/kg bw when rat were treated with 6-aminonaphthalene-1,3-disulfonic acid orally.  

In another experimental study given by U.S. National Library of Medicine (ChemIDplusA TOXNET Database, 2017) on structurally similar read across substance2-aminonaphthalene-1,5-disulfonic acid (117 -62 -4),In a acute oral toxicity study, rat were treated with 2-aminonaphthalene-1,5-disulfonic acid (117 -62 -4) orally. 50% mortality was observed in treated rats at 5430 mg/kg bw. Therefore, LD50 was considered to be 5430 mg/kg bw when rat were treated with 2-aminonaphthalene-1,5-disulfonic acid orally.    

Thus, based on the above studies and predictions on 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) and its read across substances, it can be concluded that LD50 value is 2598.40 mg/kg bw. Thus, comparing this value with the criteria of CLP 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) can be “Not classified” for acute oral toxicity.

 

Acute dermal toxicity

In different studies,2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6)has been investigated for acute dermal toxicity to a greater or lesser extent. Often are the studies based on in vivo experiments and estimated data in rodents, i.e. most commonly in rats for2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) .The predicted data using the OECD QSAR toolbox has also been compared with the experimental studies.

In a prediction done by SSS (2017) using the OECD QSAR toolbox with log kow as the primary descriptor, the acute dermal toxicity was estimated for 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6),LD50 was estimated to be 3738.35mg/kg bw, when male and female Sprague-Dawley rats were exposed with 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6) by dermal application.

In experimental study given byU.S. National Library of Medicine (ChemIDplusA TOXNET Database, 2017)on structurally similar read across substance Caprolactam (105-60-2).Acute dermal toxicity study was done in rats using test material Caprolactam (105-60-2).No mortality was observed at dose 2000mg/kg bw. Hence LD50 was considered to be >2000mg/kg body weight.When rats were treated with Caprolactam (105-60-2) by dermal application.

 

Thus, based on the above studies and predictions on 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6)and its read across substances, it can be concluded that LD50 value is 3738.35mg/kg bw. Thus, comparing this value with the criteria of CLP 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6)can be “Not classified” for acute dermal toxicity.

 

Justification for classification or non-classification

Thus, comparing this value with the criteria of CLP 2-amino-5-acetamidobenzene-1-sulfonic acid (96-78-6)can be “Not classified” for acute oral toxicity and acute dermal toxicity.