Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
experimental study
Adequacy of study:
key study
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
other: GLP study according to EU/OECD guideline

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2013
Report date:
2013

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
OECD Guideline 471 (Bacterial Reverse Mutation Assay)
GLP compliance:
yes (incl. QA statement)
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
2,2-dimethyl-4-methylidene-1,3-dioxolane
EC Number:
690-680-0
Cas Number:
19358-05-5
Molecular formula:
C6H10O2
IUPAC Name:
2,2-dimethyl-4-methylidene-1,3-dioxolane

Results and discussion

Test results
Species / strain:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and E. coli WP2
Metabolic activation:
with and without
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
cytotoxicity
Remarks:
at 5000 ug/plate concentration with and without metabolic activation except for TA1535
Vehicle controls validity:
valid
Untreated negative controls validity:
valid
Positive controls validity:
valid
Remarks on result:
other: all strains/cell types tested
Remarks:
Migrated from field 'Test system'.

Applicant's summary and conclusion

Conclusions:
The mean values of revertant colonies of the solvent control plates were within the historical control range, the reference mutagens showed the expected increase in the number of revertant colonies, the viability of the bacterial cells was checked by a plating experiment in each test. At least five analyzable concentrations were presented in all strains of the main tests. The tests were considered to be valid.
The reported data of this mutagenicity assay show (see Appendix 2 to 5) that under the experimental conditions applied the test item did not induce gene mutations by base pair changes or frameshifts in the genome of the strains used.
Executive summary:

In conclusion, the test item BCS-CL73507-BCS-BS22576 (MYDO) had no mutagenic activity in the bacterium tester strains under the test conditions used in this study.