Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 232-087-8 | CAS number: 7785-70-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
- Endpoint:
- basic toxicokinetics in vivo
- Type of information:
- experimental study
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- study well documented, meets generally accepted scientific principles, acceptable for assessment
- Objective of study:
- metabolism
- Qualifier:
- no guideline followed
- Principles of method if other than guideline:
- - Principle of test: Albino rabbits were orally administered with test item and urine was collected for 3 days for identification of urinary metabolites.
- Short description of test conditions: see below
- Parameters analysed / observed: Determination and identification of urinary metabolites - GLP compliance:
- no
- Radiolabelling:
- no
- Species:
- rabbit
- Strain:
- other: Albino (Japanese White)
- Sex:
- male
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Miyamoto Jikken Dobutsu, Hiroshima, Japan
- Age at study initiation: no data
- Weight at study initiation: 2-3 kg.
- Housing: individual stainless steel metabolism cages
- Diet (e.g. ad libitum): Oriental RC-4, ad libitum
- Water (e.g. ad libitum): ad libitum - Route of administration:
- oral: gavage
- Vehicle:
- other: 100 mL water containing 0.1 g Tween 80
- Details on exposure:
- PREPARATION OF DOSING SOLUTIONS:
The test item was suspended in water (100 ml) containing 0.1 g Tween 80 and were homogenized well. - Duration and frequency of treatment / exposure:
- Rabbits were once administered 20 mL solution through stomach tube followed by 20 mL water, corresponding to 400-560 mg/kg bw.
- Dose / conc.:
- 560 mg/kg bw/day
- Remarks:
- (maximum dose administered)
- No. of animals per sex per dose / concentration:
- 6
- Control animals:
- no
- Positive control reference chemical:
- None
- Details on dosing and sampling:
- METABOLITE CHARACTERISATION STUDIES
- Tissues and body fluids sampled (delete / add / specify): urine
- Time and frequency of sampling: The urine was collected daily for 3 days after drug administration and stored at 0-5ºC until time of analysis.
- From how many animals: 6
- Method type(s) for identification: GLC-MS, TLC, NMR, IR
- Other:
Extraction and fractionation of urinary metabolites: The urine was centrifuged to remove feces and hairs at 0ºC, and the supernate was used for the experiments. The urine was adjusted to pH 4.76 with acetate buffer and incubated with β-glucuronidase-arylsulfatase (3 ml/1000 ml of the fresh urine) at 37ºC for 48 hr, followed by continuous ether extraction for 48 hr. The ether extracts were washed with 5% NaHC03 and 5% NaOH to remove the acidic and phenolic fractions, respectively, and dried (magnesium sulfate). Ether was evaporated under reduced pressure to give neutral metabolites.
The neutral metabolites were chromatographed on a column containing 100 g of silicic acid (200 mesh). Elution was started with n-hexane, and n-hexane-ethyl acetate mixtures (95:5, 90:10,85:15,70:30, and 50:50) were used as subsequent eluents. The acidic metabolites were recovered from the sodium bicarbonate layer by acidification with 5% HCI, followed by ether extraction. The ether extracts were esterified with diazomethane in ether or with dimethyl sulfate in the presence of potassium carbonate in anhydrous acetone. These esters of the acidic metabolites also were chromatographed in the same manner as the neutral metabolites. - Metabolites identified:
- yes
- Details on metabolites:
- The main urinary metabolite from (+) alpha-pinene was (-)-trans-verbenol.
As minor metabolites of (+) alpha-pinene, two allylic products, myrtenol and myrtenic acid, were obtained. - Conclusions:
- The main urinary metabolite from (+) alpha-pinene was (-)-trans-verbenol.
- Executive summary:
The biotransformation of (+)-alpha-pinene was studied in albino rabbits orally administered 400 -560 mg/kg bw of test item in water with 0.1% Tween 80. Urine was collected daily for 3 days and urinary metabolites were identified. In this study, the main urinary metabolite from (+)-alpha-pinene was (-)-trans-verbenol. Also, as minor metabolites of (+) alpha-pinene, two allylic products, myrtenol and myrtenic acid, were obtained.
Reference
Description of key information
Basic Toxicokinetics: Metabolism. The main urinary metabolite from (+) alpha-pinene was found to be (-)-trans-verbenol.
Key value for chemical safety assessment
Additional information
Basic Toxicokinetics: Metabolism
Supporting study: The biotransformation of (+)-alpha-pinene was studied in albino rabbits orally administered 400 -560 mg/kg bw of test item in water with 0.1% Tween 80. Urine was collected daily for 3 days and urinary metabolites were identified. In this study, the main urinary metabolite from (+)-alpha-pinene was (-)-trans-verbenol. Also, as minor metabolites of (+) alpha-pinene, two allylic products, myrtenol and myrtenic acid, were obtained.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.