Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 700-893-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 26 July 2011 to 3 October 2011
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Guideline Study with GLP
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- according to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- GLP compliance:
- yes
- Type of assay:
- bacterial reverse mutation assay
- Target gene:
- his- (s. typhimurium)
- Species / strain / cell type:
- S. typhimurium TA 1535
- Species / strain / cell type:
- S. typhimurium TA 102
- Species / strain / cell type:
- S. typhimurium TA 100
- Species / strain / cell type:
- S. typhimurium TA 98
- Species / strain / cell type:
- other: S. typhimurium TA97a
- Metabolic activation:
- with and without
- Metabolic activation system:
- S9-mix from Aroclor 1254 induced microsomes of rat liver
- Test concentrations with justification for top dose:
- The test substance was suspended in DMSO. The following concentrations were tested:
62, 185, 556, 1667 and 5000 µg per plate without external metabolisation, and
62, 185, 556, 1667 and 5000 µg per plate with S9-mix from Aroclor 1254 induced microsomes of rat liver as an external metabolising system. - Vehicle / solvent:
- DMSO
- Untreated negative controls:
- no
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- no
- Positive controls:
- yes
- Positive control substance:
- other: 2-Aminoanthracene; 7,12-Dimethylbenz[a]anthracene ; 1,8-Dihydroxy-anthraquinone; 2-Nitrofluorene; Sodium azide; 4-Nitro-o-phenylenediamine; t-Butyl-hydroperoxide
- Details on test system and experimental conditions:
- For the preliminary toxicity test the following solutions/suspensions were combined:
Strain TA100 (overnight culture): 0.1 mL,
S9-mix or phosphate buffered saline: 0.5 mL,
Test substance solution: 0.1 mL,
Top agar: 2.0 mL.
Concentrations of test substance solutions used: 5000, 1667, 556, 185, 62 and 21 µg/plate.
The combined solutions were mixed and spread over a plate with minimal agar (9 cm diameter). After the top agar had solidified, the plates were incubated at 37 °C for 2 days and the growth of the bacterial background and the density of revertant colonies were determined.
The exposure for the first experiment was performed according to the 'Plate Incorporation Assay', in which bacteria, test substance (and microsomes) are in contact on the plate without preceding incubation in the liquid state.
For each sample the following solutions were combined:
• 0.1 mL of the overnight culture of the bacteria,
• 0.5 mL of S9-mix (or phosphate buffered saline for samples without metabolic activation),
• 0.1 mL of the appropriate test- or reference substance solution and
• 2 mL of top agar.
The combined solutions were mixed and spread over a plate with minimal agar (9 cm diameter). After the top agar had solidified, the plates were incubated at 37 °C until the colonies were visible (2 days).
The exposure for the second experiment was performed according to the 'Preincubation Assay', in which bacteria, test substance (and microsomes) are in contact on the plate with preceding incubation in the liquid state.
For each sample the following solutions were combined:
• 0.1 mL of the overnight culture of the bacteria,
• 0.5 mL of S9-mix (or phosphate buffered saline for samples without metabolic activation),
• 0.1 mL of the appropriate test- or reference substance solution.
The solutions were preincubated for 20 minutes at 37 °C using a shaker, afterwards combined with 2 mL of top agar and spread over a plate with minimal agar (9 cm diameter). After the top agar had solidified, the plates were incubated at 37 °C until the colonies were visible (2 days). - Evaluation criteria:
- Means and standard deviations were calculated for the number of mutants in every concentration group.
The criteria for a positive result are:
A reproducible increase of the number of revertants to more than the following threshold values for at least one of the concentrations:
• For the strains with a low spontaneous revertant rate i.e. TA98 and TA1535: The 2½ fold of the amount of the spontaneous revertants.
• For the strains with a high spontaneous revertant rate i.e. TA97a, TA100 and TA102: The 12/3 fold of the amount of the spontaneous revertants. - Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- other: S. typhimurium TA 97a
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Positive controls validity:
- valid
- Additional information on results:
- PRECIPITATION:
No precipitation of the test substance was seen in any of the concentration groups.
RANGE-FINDING/SCREENING STUDIES:
In the preliminary test and in the main test no toxicity was seen up to 5000 µg/plate.
COMPARISON WITH HISTORICAL CONTROL DATA:
The numbers of spontaneous revertants were comparable with the historic control data for the negative controls.
ADDITIONAL INFORMATION ON CYTOTOXICITY:
No toxicity was seen up to 5000 µg/plate. - Conclusions:
- Interpretation of results (migrated information):
negative without metabolic activation
negative with metabolic activation
According to the results of this investigation, "DOPO-OX-Ammonium" is not mutagenic in the Ames test with the strains of Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without an external metabolising system up to 5000 µg/plate, which is the limit concentration for this kind of test. - Executive summary:
"DOPO-OX-Ammonium" was tested for mutagenic activity with the "Salmonella typhimurium Reverse Mutation Test" (Ames Test). The study was conducted in accordance with the OECD-guideline 471 and the Council Regulation (EC) No 440/2008, Method B.13/14.
The test substance was suspended in DMSO. The following concentrations were tested:
62, 185, 556, 1667 and 5000µg per plate without external metabolisation, and
62, 185, 556, 1667 and 5000µg per plate with S9-mix from Aroclor 1254 induced microsomes of rat liver as an external metabolising system.
In the first experiment the test was performed according to the "direct plate incorporation method", in the second experiment according to the "preincubation method". As test system the bacterial strains Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 were used. Negative and positive controls were included.
Results
Positive controls:
All positive control groups showed significantly increased mutation frequencies which demonstrate the sensitivity of the test system.
Test substance:
Toxicity:
No toxicity of the test substance to the bacteria was observed up to 5000 µg per plate.
Solubility:
No precipitation of the test substance was seen in any of the concentration groups.
Mutagenicity:
In none of the concentrations tested and with none of the strains used an increase of the mutation frequency to more than the threshold values (250 % of the controls for strains TA98 and TA1535, 167 % of the controls for strains TA97a, TA100 and TA102) was obtained. Metabolic activation did not change these results.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Additional information
Justification for selection of genetic toxicity endpoint
Key study.
Justification for classification or non-classification
There is no indication which would justify a classification.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.