Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 700-071-4 | CAS number: 932742-30-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Based on the reactive nature of SIKA Hardener LI and its limited stability in water-based systems, bioaccumulation is not likely to occur. Orally consumed hardener is most rapidly hydrolysed to aldehyde and polyamine, with the reaction being acid catalysed. Even though the degradation products might be absorbed and become bioavailable, toxicity is low and bioconcentration rather unlikely. Absorbed or bioavailable degradation products are probably excreted, either in original form or further metabolised, prior to elimination via urine or bile.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
Additional information
General
SIKA Hardener LI belongs to a class of polyaldimine compounds used as hardeners for polyurethane moisture hardening preparations. The preparations are used as adhesive and sealant in the production of transport vehicle modules. On contact with water, the hardening process is initiated and the hardener rapidly hydrolysed. Hydrolysis products formed are the aldehyde 2,2-dimethyl-3-lauroyloxy-propanal and corresponding polyamine. The hardener and polyurethane mass react and become chemically bound in the polymer matrix, irreversibly integrating the amine component and the polyamine and to some extend the aldehyde. Due to the use of the compound, SIKA Hardener LI has a very limited stability in water, as it needs to rapidly react upon contact with water. Thus, determination of its partition coefficient or water solubility is technically not feasible. The theoretical partition coefficient and water solubility ranges were calculated, taking the varying oligomere chain lengths into account.
Toxicokinetic assessment
Based on molecular structure and physical-chemical properties, bioaccumulation of SIKA Hardener LI is not likely to occur. Dermal and inhalation uptake can be practically exclued. Orally consumed hardener is very fast hydrolysed to aldehyde and polyamine, in the acid environment of the stomach. Even though the degradation products might be absorbed and become bioavailable, toxicity is low and bioconcentration rather unlikely. Absorbed or bioavailable degradation products are probably excreted, either in original form or further metabolised, prior to elimination via urine or bile. Formation of toxic metabolites is unlikely, based on the results of the subacute toxicity study and two in vitro studies using isolated S9 fractions. However, a subchronic oral toxicity study indicated toxicity as a test item related effect was observed at 1000 mg/kg bw (changes in spleen weights in female rats), resulting in a NOAEL of 300 mg/kg bw.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.